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Abstract

Multi-chamber heart segmentation is a prerequisite for
global quantification of the cardiac function. The com-
plexity of cardiac anatomy, poor contrast, noise or mo-
tion artifacts makes this segmentation problem a challeng-
ing task. In this paper, we present an efficient, robust, and
fully automatic segmentation method for 3D cardiac com-
puted tomography (CT) volumes. Our approach is based
on recent advances in learning discriminative object mod-
els and we exploit a large database of annotated CT vol-
umes. We formulate the segmentation as a two step learn-
ing problem: anatomical structure localization and bound-
ary delineation. A novel algorithm, Marginal Space Learn-
ing (MSL), is introduced to solve the 9-dimensional sim-
ilarity search problem for localizing the heart chambers.
MSL reduces the number of testing hypotheses by about
six orders of magnitude. We also propose to use steer-
able image features, which incorporate the orientation and
scale information into the distribution of sampling points,
thus avoiding the time-consuming volume data rotation op-
erations. After determining the similarity transformation
of the heart chambers, we estimate the 3D shape through
learning-based boundary delineation. Extensive experi-
ments on multi-chamber heart segmentation demonstrate
the efficiency and robustness of the proposed approach,
comparing favorably to the state-of-the-art. This is the first
study reporting stable results on a large cardiac CT dataset
with 323 volumes. In addition, we achieve a speed of less
than eight seconds for automatic segmentation of all four
chambers.

1. Introduction

Cardiac computed tomography (CT) is an important
imaging modality for diagnosing cardiovascular disease and
it can provide detailed anatomic information about the car-
diac chambers, large vessels or coronary arteries. Segmen-

Figure 1. Complete segmentation of all four chambers in a CT
volume with green for the left ventricle (LV) endocardial surface,
magenta for LV epicardial surface, cyan for the left atrium (LA),
brown for the right ventricle (RV), and blue for the right atrium
(RA).

tation of cardiac chambers is a prerequisite for quantitative
functional analysis and various approaches have been pro-
posed in the literature [6, 7]. Except for a few works [5, 24],
most of the previous research focuses on the left ventricle
(LV) segmentation. However, complete segmentation of all
four heart chambers, as shown in Fig. 1, can help to diag-
nose diseases in other chambers, e.g., left atrium (LA) fibril-
lation, right ventricle (RV) overload or to perform dyssyn-
chrony analysis.

There are two tasks for a non-rigid object segmenta-
tion problem: object localization and boundary delineation.
Most of the previous approaches focus on boundary de-
lineation based on active shape models (ASM) [22], ac-
tive appearance models (AAM) [1, 13], and deformable
models [2, 4, 5, 8, 12, 17]. There are a few limitations
inherent in these techniques: 1) Most of them are semi-
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automatic and manual labeling of a rough position and pose
of the heart chambers is needed. 2) They are likely to
get stuck in local strong image evidence. Other techniques
are straightforward extensions of 2D image segmentation to
3D [10, 18, 25]. The segmentation is performed on each 2D
slice and the results are combined to get the final 3D seg-
mentation. However, such techniques cannot fully exploit
the benefit of 3D imaging in a natural way. Lorenzo-Valdés
et al. [11] proposed a registration based approach, but its
performance is not clear for large datasets.

Object localization is required for an automatic segmen-
tation system and discriminative learning approaches have
proved to be efficient and robust for solving 2D problems.
In these methods, shape detection or localization is formu-
lated as a classification problem: whether an image block
contains the target shape or not [16, 23]. To build a robust
system, a classifier only has to tolerate limited variation in
object pose. The object is found by scanning the classi-
fier over an exhaustive range of possible locations, orienta-
tions, scales or other parameters in an image. This search-
ing strategy is different from other parameter estimation ap-
proaches, such as deformable models, where an initial esti-
mate is adjusted (e.g., using the gradient descent technique)
to optimize a predefined objective function.

Exhaustive searching makes the system robust under lo-
cal minima, however there are two challenges to extend the
learning based approaches to 3D. First, the number of hy-
potheses increases exponentially with respect to the dimen-
sionality of the parameter space. For example, there are
nine degrees of freedom for the anisotropic similarity trans-
formation1, namely three translation parameters, three rota-
tion angles, and three scales. Suppose we search n discrete
values for each dimension, the number of tested hypothe-
ses is n9 (for a very coarse estimation with a small n=5,
n9=1,953,125).The computational demands are beyond the
capabilities of current desktop computers. Due to this lim-
itation, previous approaches often constrain the search to
a lower dimensional space. For example, only the posi-
tion and isotropic scaling (4D) is searched in the general-
ized Hough transformation based approach [19]. Hong et
al. [9] extended the learning based approach to a 5D pa-
rameter space for semi-automatic segmentation. The sec-
ond challenge is that we need efficient features to search the
orientation and scale spaces. Haar wavelet features can be
efficiently computed for translation and scale transforma-
tions [15, 23]. However when searching for rotation param-
eters one either has to rotate the feature templates or rotate
the volume which is very time consuming. The efficiency of
image feature computation becomes more important when
combined with a very large number of test hypotheses.

1The ordinary similarity transformation allows only isotropic scaling.
In this paper, we search for anisotropic scales to cope better with the non-
rigid deformation of the shape.

Figure 2. 3D object localization using marginal space learning.

1.1. Overview of Our Approach

In this paper, we propose two simple but elegant tech-
niques, marginal space learning (MSL) and steerable fea-
tures, to solve the above challenges. The idea for MSL is
not to learn a classifier directly in the full similarity parame-
ters space but to incrementally learn classifiers on projected
sample distributions. As the dimensionality increases, the
valid (positive) space region becomes more restricted by
previous marginal space classifiers. In our case, we split
the estimation into three problems: translation estimation,
translation-orientation estimation, and full similarity esti-
mation (Fig. 2). After each step, we maintain multiple can-
didates to increase the robustness.

Besides reducing the searching space significantly, there
is another advantage using MSL: we can use different fea-
tures or learning methods in each step. For example, in
the translation estimation step, since we treat rotation as
an intra-class variation, we can use the efficient 3D Haar
features [21]. In the translation-orientation and similarity
transformation estimation steps, we introduce the steerable
features, another major contribution of this paper. Steer-
able features constitute a very flexible framework where the
idea is to sample a few points from the volume under a spe-
cial pattern. We extract a few local features for each sam-
pling point, such as voxel intensity and gradient. To eval-
uate the steerable features under a specified orientation, we
only need to steer the sampling pattern and no volume rota-
tion is involved.

After similarity transformation estimation, we get an ini-
tial estimate of the non-rigid shape. We use learning based
3D boundary detection to guide the shape deformation in
the ASM framework. Again, steerable features are used to
train local detectors and find the boundary under any orien-
tation, therefore avoiding time consuming volume rotation.

In summary, we make the following contributions:
1. We propose MSL to search the shape space efficiently.

2. We introduce steerable features, which can be evalu-
ated efficiently under any orientation and scale without
rotating the volume. These features are also exploited
in a learning-based 3D boundary detection scheme.

3. Combining the above techniques, we have imple-
mented a fully automatic, fast, and robust system for
multi-chamber heart segmentation in CT volumes.



In the remaining of the paper, we first present our two
major contributions, marginal space learning in Section 2
and steerable features in Section 3. Their application to 3D
object localization is discussed in Section 4. The learning
based 3D boundary detection and its application for non-
rigid deformation estimation are discussed in Section 5. We
demonstrate the robustness of the proposed method on heart
chamber segmentation in Section 6. This paper ends with a
discussion of the future work in Section 7.

2. Marginal Space Learning

In many cases, the posterior distribution is clustered in a
small region in the high dimensional parameter space. It is
not necessary to search the whole space uniformly and ex-
haustively We propose a novel efficient parameter searching
method, marginal space learning, to search such clustered
space. In MSL, the dimensionality of the search space is
gradually increased. Let Ω be the space where the solution
to the given problem exists and let PΩ be the true probabil-
ity that needs to be learned. The learning and computation
are performed in a sequence of marginal spaces

Ω1 ⊂ Ω2 ⊂ ... ⊂ Ωn = Ω (1)

such that Ω1 is a low dimensional space (e.g., 3-dimensional
translation instead of 9-dimensional similarity transforma-
tion), and for each k, dim(Ωk) − dim(Ωk−1) is small. A
search in the marginal space Ω1 using the learned probabil-
ity model finds a subspace Π1 ⊂ Ω1 containing the most
probable values and discards the rest of the space. The
restricted marginal space Π1 is then extended to Πe

1 =
Π1 × X1 ⊂ Ω2. Another stage of learning and testing
is performed on Πe

1 obtaining a restricted marginal space
Π2 ⊂ Ω2 and the procedure is repeated until the full space
Ω is reached. At each step, the restricted space Πk is one
or two orders of magnitude smaller than Πk−1 ×Xk. This
results in a very efficient algorithm with minimal loss in
performance.

Fig. 3 illustrates a simple example for 2D space search-
ing. A classifier trained on p(y) can quickly eliminate a
large portion of the search space. We can then train a clas-
sifier in a much smaller region (region 2 in Fig. 3) for joint
distribution p(x, y). Note that MSL is significantly differ-
ent from a classifier cascade [23] . In a cascade the search
and learning are performed in the same space while for
MSL the learning and search space is gradually increased.

MSL is similar to particle filters [14] in the way we han-
dle multiple hypotheses. Both approaches keep a limited
number of samples to represent underlying probability dis-
tributions. Samples are propagated sequentially to the fol-
lowing stages and pruned by the model.

Figure 3. Marginal space learning. A classifier trained on p(y) can
quickly eliminate a large portion (regions 1 and 3) of the search
space. Another classifier is then trained on restricted space for
p(x, y).
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Figure 4. Sampling patterns in the steerable features (visualized in
2D for clearance). (a) A regular sampling pattern. (b) Sampling
pattern with points around the shape boundary.

3. Steerable Features

In the section, we present another contribution of this pa-
per, steerable features, which enjoys the advantages of both
global and local features. Global features, such as 3D Haar
wavelet features, are effective to capture the global infor-
mation (e.g., orientation and scale) of an object. As shown
in [21], pre-alignment of the image or volume is important
for a learning based approach. However, it is very time con-
suming to rotate a 3D volume, so 3D Haar wavelet features
are not efficient for orientation estimation. Local features
are fast to evaluate but they lose the global information of
the whole object. In this paper, we propose a new frame-
work, steerable features, which can capture the orientation
and scale of the object and at the same time be very efficient.

Basically, we sample a few points from the volume un-
der a special pattern. We then extract a few local features
for each sampling point, such as voxel intensity and gra-
dient. Fig. 4a shows a regular sampling pattern. Suppose
we want to test if hypothesis (X,Y, Z, ψ, φ, θ, Sx, Sy, Sz)
is a good estimation of the similarity transformation of the
object in the volume. We put a local coordinate system cen-
tered on the candidate position (X,Y, Z) and align the axes
with the hypothesized orientation (ψ, φ, θ). We uniformly
sample a few points along each coordinate axis inside a rect-
angle (represented as ‘x’ in Fig. 4a). The sampling step
along an axis is proportional to the scale (Sx, Sy , and Sz)
of the shape in that direction to incorporate the scale infor-



mation. The steerable features are a general framework and
different sampling patterns can be defined depending on the
application to incorporate the orientation and scale informa-
tion. For many shapes, since the boundary provides critical
information about the orientation and scale, we can strate-
gically put sampling points around the boundary, as shown
in Fig. 4b.

For each sampling point, we extract a set of local features
based on the intensity and gradient. For example, given a
sampling point (x, y, z), if its intensity is I and the gradient
is g = (gx, gy, gz), the following features are used: I ,

√
I ,

I2, I3, log I , gx, gy , gz , ‖g‖,
√
‖g‖, ‖g‖2, ‖g‖3, log ‖g‖,

. . . , etc. In total, we have 24 local features for each sam-
pling point. Suppose there are P sampling points (often in
the order of a few hundreds to a thousand), we get a feature
pool containing 24 × P features. This features are used to
train simple classifiers and we use probabilistic boosting-
tree (PBT) [20] to combine them to get a strong classifier
for the given parameters.

Instead of aligning the volume to the hypothesized ori-
entation to extract Haar wavelet features [21], we steer the
sampling pattern. This is where the name “steerable fea-
tures” comes from2. In the steerable feature framework,
each feature is local, therefore efficient. The sampling pat-
tern is global to capture the orientation and scale informa-
tion. In this way, it combines the advantages of both global
and local features.

4. 3D Object Localization

In this section, we present our 3D object localization
scheme using MSL and steerable features. To increase the
speed, we use a pyramid-based coarse-to-fine strategy and
the similarity transformation estimation is performed on a
low-resolution (3 mm) volume.

4.1. Training of Object Position Estimator

As shown in Fig. 2, first, we estimate the position of
the object inside the volume. We treat the orientation and
scale as the intra-class variations, therefore learning is con-
strained in a marginal space with three dimensions. Haar
wavelet features are very fast to compute and have been
shown to be effective for many applications [15, 23]. There-
fore, we use 3D Haar wavelet features for learning in this
step. Readers are referred to [15, 21, 23] for details about
3D Haar wavelet features.

Given a set of candidates, we split them into two groups,
positive and negative, based on their distance to the ground
truth. The error in object position and scale estimation is
not comparable with that of orientation estimation directly.
Therefore, we define a normalized distance measure using

2It has no relationship with the well known steerable filters

the searching step size.

E = max
i=1,...,N

|V e
i − V t

i |/SearchStepi, (2)

where is V e
i is the estimated value for dimension i and V t

i

is the ground truth. A sample is regarded as a positive one
if E ≤ 1.0 and all the others are negative samples. The
searching step for position estimation is one voxel, so a pos-
itive sample (X,Y, Z) should satisfy

max{|X −Xt|, |Y − Yt|, |Z − Zt|} ≤ 1 voxel, (3)

where (Xt, Yt, Zt) is the ground truth of the object center.
Given a set of positive and negative training samples, we

extract 3D Haar wavelet features and train a classifier using
the probabilistic boosting-tree (PBT) [20]. Given a trained
classifier, we use it to scan a training volume and preserve a
small number of candidates (100 in our experiments), such
that the solution is among top hypotheses.

4.2. Training of Position-Orientation and Similar-
ity Transformation Estimators

Suppose for a given volume, we have 100 candidates,
(Xi, Yi, Zi), i = 1 . . . 100, for the object position. We
then estimate both the position and orientation. The hy-
pothesized parameter space is six dimensional so we need
to augment the dimension of candidates. For each can-
didate of the position, we scan the orientation space uni-
formly to generate hypotheses for orientation estimation. It
is well-known that the orientation in 3D can be represented
as three Euler angles, ψ, φ, and θ. We scan the orienta-
tion space using a step size of 0.2 radians (11 degrees). For
each candidate (Xi, Yi, Zi), we augment it with N (about
1000) hypotheses about orientation, (Xi, Yi, Zi, ψj , φj , θj),
j = 1 . . . N . Some hypotheses are close to the ground truth
(positive) and others are far away (negative). The learning
goal is to distinguish the positive and negative samples us-
ing image features (here, steerable features). A hypothesis
(X,Y, Z, ψ, φ, θ) is regarded as a positive sample if it satis-
fies both Eq. 3 and

max{|ψ − ψt|, |φ− φt|, |θ − θt|} ≤ 0.2, (4)

where (ψt, φt, θt) represent the orientation ground truth.
All the other hypotheses are regarded as negative samples.

Since aligning 3D Haar wavelet features to a specified
orientation is not efficient, we use the proposed steerable
features in the following steps. We train a classifier using
PBT and the steerable features. The trained classifier is used
to prune the hypotheses to preserve only a few candidates
(50 in our experiments).

The similarity (adding the scale) estimation step is anal-
ogous except learning is performed in the full nine dimen-
sional similarity transformation space. The dimension of
each candidate is augmented by scanning the scale subspace
uniformly and exhaustively.



(a) (b) (c)
Figure 5. Example of non-rigid deformation estimation for LV with green for endocardial surface and magenta for epicardial surface. (a)
Detected mean shape. (b) After boundary adjustment. (c) Final delineation by projecting the adjusted shape onto a shape subspace (50
dimensions).

4.3. Testing Procedure

This section provides a summary about the testing pro-
cedure on an unseen volume. The input volume is first nor-
malized to 3 mm isotropic resolution, and all voxels are
scanned using the trained position estimator. Top 100 can-
didates, (Xi, Yi, Zi), i = 1 . . . 100, are kept. Each candi-
date is augmented with N (about 1000) hypotheses about
orientation, (Xi, Yi, Zi, ψj , φj , θj), j = 1 . . . N . Next,
the trained translation-orientation classifier is used to prune
these 100 × N hypotheses and the top 50 candidates are
retained, (X̂i, Ŷi, Ẑi, ψ̂i, φ̂i, θ̂i), i = 1 . . . 50. Similarly, we
augment each candidate withM (also about 1000) hypothe-
ses about scaling and use the trained classifier to rank these
50×M hypotheses. The goal is to obtain a single estimate
of the similarity transformation. We tried several methods
to aggregate multiple candidates and found a simple aver-
aging of the top K (K = 100) gives the best estimate.

In terms of computational complexity, for translation es-
timation, all voxels are scanned (about 260,000 for a small
64 × 64 × 64 volume at the 3 mm resolution) for possible
object position. There are about 1000 hypotheses for ori-
entation and scale each. If the parameter space is searched
uniformly and exhaustively, there are about 2.6 × 1011 hy-
potheses to be tested! However, using MSL, we only test
about 260, 000 + 100 × 1000 + 50 × 1000 = 4.1 × 105

hypotheses and reduce the testing by almost six orders of
magnitude.

5. Non-Rigid Deformation Estimation

After the first stage, we get the position, orientation, and
scale of the object. We align the mean shape with the esti-
mated transformation to get a rough estimate of the object
shape. Fig. 5a shows the aligned left ventricle (LV) for heart
chamber segmentation in a cardiac CT volume.

We train a set of local boundary detectors using the pro-
posed steerable features with the regular sampling pattern
(as shown in Fig. 4a). The boundary detectors are then used

(a) (b) (c)
Figure 6. Triangulated heart surface model. (a) LV and LA. (b) RV
and RA. (c) Combined four-chamber model.

to move each landmark point to the optimal position where
the estimated boundary probability is maximized. Since
more accurate delineation of the shape boundary is desired,
this stage is performed on the original high resolution vol-
ume. Fig. 5b shows the adjusted shape of LV, which follows
the boundary well but is not smooth and unnatural shape
may be generated. Shape constraint is enforced by project-
ing the adjusted shape onto a shape subspace to get the final
result [3], as shown in Fig. 5c. The arrow in the figure indi-
cates the region with better boundary delineation.

Our non-rigid deformation estimation approach is within
the ASM framework. The major difference is that we use a
learning based 3D boundary detector, which is more robust
under complex background. Readers are referred to [3] for
more details about ASM.

6. Experiments

In this section, we demonstrate the performance of the
proposed method for multi-chamber localization and delin-
eation in cardiac CT volumes. As shown in Fig. 6, trian-
gulated surface meshes are used to represent the anatomi-
cal structures. We delineate both the endo- and epi-cardial
surfaces for LV, but only the endocardial surface for other
chambers. During manual labeling, we establish correspon-
dence between mesh points crossing volumes, therefore, we
can build the statistical shape model for ASM [3]. Details



about correspondence establishment are out the scope of
this paper. In the following experiments, each chamber is
processed independently. The detected meshes from differ-
ent chambers may cross each other, natural constraints are
imposed as post-processing to solve the conflict.

6.1. Data Set

We collected and annotated 323 cardiac CT volumes
from 137 patients with various cardiovascular diseases. The
number of patients is significantly larger than those reported
in the literature, for example, 10 in [19], 13 in [5], and 18
in [10]. The imaging protocols are heterogeneous with dif-
ferent capture ranges and resolutions. A volume contains
80 to 350 slices and the size of each slice is 512× 512 pix-
els. The resolution inside a slice is isotropic and varies from
0.28 mm to 0.74 mm, while slice thickness varies from 0.4
mm to 2.0 mm for different volumes. Four-fold cross vali-
dation is performed to evaluate our algorithm. Special care
is taken to prevent volumes from the same patient appear
in both the training and test sets. In the following, all the
evaluation is done based on four-fold cross validation.

6.2. Experiments on Heart Chambers Localization

In this section, we evaluate the proposed approach for the
similarity transformation estimation, using the error mea-
sure defined in Eq. 2. Comparing to other error measures
(e.g., the weighted Euclidean distance), an advantage of
our error measure is that we can easily distinguish optimal
and non-optimal estimates. The optimal estimate under any
specified searching grid is up-bounded by 0.5, while the er-
ror of a non-optimal one is larger than 0.5.

To efficiently explore the high-dimensional searching
space using MSL, we keep a small number of candidates
after each step. One concern about MSL is that since the
space is not fully explored, it may miss the optimal solution
at an early stage. In the following, we demonstrate that ac-
curacy only deteriorates slightly in MSL. Fig. 7 shows the
error of the best candidate after each step with respect to
the number of candidates preserved. The curves are cal-
culated on all 323 volumes based on cross validation. The
red line shows the error of the optimal solution under the
searching grid. As shown in Fig. 7a for translation esti-
mation (where the curves almost overlap each other), if we
keep only one candidate, the average error may be as large
as 3.5 voxels. However, by keeping more candidates, the
minimum errors decrease quickly. We have a high proba-
bility to keep the optimal solution when 100 candidates are
preserved. Therefore, after this step, we can reduce the can-
didates dramatically. For translation-orientation estimation,
as shown in Fig. 7b, the errors of the best candidates also
decrease quickly with more candidates preserved. Based on
the trade-off between accuracy and speed, we preserve 50
candidates. Similarly, after full similarity transformation

estimation, the best candidates we get have an error ranging
from 1.0 to 1.4 searching steps as shown in Fig. 7c.

Finally, we use simple averaging to aggregate the mul-
tiple candidates into the final single estimate. As shown in
Fig. 8a, the errors decrease quickly with more candidates
for averaging until 100 and after that they saturate. Using
100 candidates for averaging, we achieve an error of about
1.5 to 2.0 searching steps for different chambers. Fig. 8b
shows the cumulative errors on all volumes. Without any
major failure, our approach is more robust than [5], where
the success rate of heart localization is about 90%.

The conclusion of these experiments is that only a small
number of candidates are necessary to be preserved after
each step, without deteriorating accuracy much.

6.3. Experiments on Boundary Delineation

After we get the position, orientation, and scale of the
object, we align the mean shape with the estimated trans-
formation. We train five boundary detectors (one for each
surface) and use them to guide the shape deformation to fit
the boundary (as presented in Section 5).

The accuracy of boundary delineation is measured with
the point-to-mesh distance, Ep2m. For each point on a
mesh, we search for the closest point on the other mesh to
calculate the minimum distance. We calculate the point-to-
mesh distance from the detected mesh to the ground-truth
and vice verse to make the measurement symmetric. Table 1
shows the mean and variance of Ep2m. The mean Ep2m er-
ror of the initialization ranges from 2.78 mm to 3.23 mm.
By deforming the mean shape to fit the boundary, we can
reduce the error by a half. The mean Ep2m error ranges
form 1.29 mm to 1.57 mm for different chambers. LV and
LA have smaller errors than RV and RA since the contrast
of the blood pool in the left side of a heart is consistently
higher than the right side due to the using of contrast agents
(as shown in Fig. 10).

We also compare our approach to the baseline ASM us-
ing non-learning based boundary detection scheme [3]. The
same detected mean shape is used to initialize the defor-
mation, and the iteration number in the baseline ASM is
tuned to give the best performance. As shown in Table 1,
the baseline ASM only slightly reduces the error for weak
boundaries (such as LV epicardial, RV, and RA surfaces). It
performs much better for strong boundaries, such as LV en-
docardial and LA surfaces, but it is significantly worse than
the proposed method. Fig. 9 shows the cumulative errors
of Ep2m for the baseline ASM and the proposed approach.
Due to the space limit, we only show the results for LV, both
endo- and epi-cardial surfaces.

Fig. 10 shows several examples for heart chamber seg-
mentation using the proposed approach. The second row
shows a volume with low contrast, our segmentation result
is quite good. Our approach is robust even under severe
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Figure 7. The error of the best candidate with respect to the number of candidates preserved after each step. (a) Translation, (b) translation-
orientation, and (c) full similarity transformation estimation, respectively. The red line shows the lower bound of the error.

Table 1. Mean and variance (in parentheses) of the point-to-mesh
error (in millimeters) for the segmentation of heart chambers on
323 volumes based on cross validation.

Initialization Baseline ASM [3] Our Approach
LV Endo 3.23 (1.17) 2.37 (1.03) 1.29 (0.53)
LV Epi 3.05 (1.04) 2.78 (0.98) 1.33 (0.42)

LA 2.78 (0.98) 1.89 (1.43) 1.32 (0.42)
RV 2.93 (0.75) 2.69 (1.10) 1.55 (0.38)
RA 3.09 (0.86) 2.81 (1.15) 1.57 (0.48)
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Figure 8. Similarity transformation estimation error by aggregat-
ing multiple candidates. (a) Error vs. the number of candidates
for averaging. (b) Cumulative errors on 323 test cases using 100
candidates for averaging.

(a) (b)
Figure 9. Cumulative errors of point-to-mesh distance, Ep2m, for
(a) LV endocardial surface and (b) LV epicardial surface.

streak artifacts as shown in the third example. Please refer
to the supplementary materials for more examples.

Our approach is fast with an average speed of 7.9 sec-
onds for automatic segmentation of all four chambers (on
a computer with a 3.2 GHz CPU and 3 GB memory). The

Figure 10. Examples of heart chamber segmentation in 3D CT vol-
umes with green for LV endocardial surface, magenta for LV epi-
cardial surface, cyan for LA, brown for RV, and blue for RA. Each
row represents three orthogonal views of a volume.

computation time is roughly equally split on the MSL based
similarity transformation estimation and the non-rigid de-
formation estimation. Our approach is sensibly faster com-
paring to other reported results, e.g., 3 seconds for LV us-
ing a semi-automatic approach in [9], 15 seconds for non-
rigid deformation in [24], 50 seconds for heart localization
in [19], and 2-3 minutes for a 3D AAM based approach
in [13].



7. Conclusions and Future Work
In this paper, we proposed an efficient and robust ap-

proach for automatic heart chamber segmentation in 3D
CT volumes. The efficiency of our approach comes from
the two new techniques named marginal space learning and
steerable features. Robustness is achieved by using recent
advances in learning discriminative object models and ex-
ploiting large volumetric images databases. All major steps
in our approach are learning-based therefore minimizing the
number of underlying model assumptions. According to our
knowledge, this is the first study reporting stable results on
a large cardiac CT data set. Our approach is general and we
have extensively tested it on many challenging 3D detection
and segmentation tasks in medical imaging (e.g., ileocecal
valves, polyps, and livers in abdominal CT, brain tissues
and heart chambers in ultrasound images, and heart cham-
bers in MRI). In our current system, each heart chamber is
detected independently. This is by no means optimal. In the
future, we will exploit the geometric constraints among dif-
ferent chambers to improve the system on both speed and
accuracy.
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