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Abstract. Automatic delineation and robust measurement of fetal
anat-omical structures in 2D ultrasound images is a challenging task due
to the complexity of the object appearance, noise, shadows, and quan-
tity of information to be processed. Previous solutions rely on explicit
encoding of prior knowledge and formulate the problem as a percep-
tual grouping task solved through clustering or variational approaches.
These methods are known to be limited by the validity of the underly-
ing assumptions and cannot capture complex structure appearances. We
propose a novel system for fast automatic obstetric measurements by
directly exploiting a large database of expert annotated fetal anatom-
ical structures in ultrasound images. Our method learns to distinguish
between the appearance of the object of interest and background by
training a discriminative constrained probabilistic boosting tree classi-
fier. This system is able to handle previously unsolved problems in this
domain, such as the effective segmentation of fetal abdomens. We show
results on fully automatic measurement of head circumference, biparietal
diameter, abdominal circumference and femur length. Unparalleled ex-
tensive experiments show that our system is, on average, close to the ac-
curacy of experts in terms of segmentation and obstetric measurements.
Finally, this system runs under half second on a standard dual-core PC
computer.

1 Introduction

Accurate fetal ultrasound measurements are one of the most important factors
for high quality obstetrics health care. Common fetal ultrasound measurements
include: bi-parietal diameter (BPD), head circumference (HC), abdominal cir-
cumference (AC), and femur length (FL). These measures are used to estimate
the gestational age (GA) of the fetus [11] and are an important diagnostic tool.
Although prevalent in clinical setting, the manual measurement by specialists
of BPD, HC, AC, and FL present the following issues: 1) the quality of the
measurements are user-dependent, 2) the exam can take more than 30 minutes,
and 3) specialists can suffer from Repetitive Stress Injury (RSI) due to these
lengthy exams. The automation of these ultrasound measures has the poten-
tial of improving productivity and patient throughput, enhancing accuracy and
consistency of measurements, and reducing the risk of RSI to specialists.
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In this paper we present an on-line system that targets the accurate and ro-
bust detection and segmentation of fetal head, abdomen, and femur in ultrasound
images. The segmentation information is then used to compute BPD, HC, AC,
and FL. Our approach directly exploits the expert annotation of fetal anatomical
structures in large databases of ultrasound images [3] to train a novel discrimina-
tive appearance classifier of simple image features derived from the probabilistic
boosting tree classifier (PBT) [12]. Our method can handle two previously un-
solved issues in the domain of fetal ultrasound imaging. First, our system is able
to provide an accurate segmentation of the fetal abdomen. Second, the approach
was designed to be totally automatic, so the user does not need to provide any
initial guess. The only inputs to the system is the image and the measurement
to be performed (BPD, HC, AC, or FL). Extensive experiments show that, on
average, there is practically no difference between the measurement produced by
our system and the annotation made by experts for the four fetal measurements
mentioned above. Moreover, the algorithm runs under half second on a standard
dual core PC computer.

2 Literature Review

The detection and segmentation of fetal anatomical structures in ultrasound im-
ages have been studied by several researchers [1,4,5,9]. An important common
point among these papers is that they heavily exploit the low-level structures of
the imaging of the fetal anatomy, such as edge or texture, which is usually ef-
fective at segmenting heads and femurs due to strong signal responses produced
by the imaging of the skull and femur. However, the segmentation of abdomens
(see Fig. 3) represents a more challenging problem, where such set of low-level
structures has proved to be extremely hard to find. The most promising ap-
proaches by Chalana et al. [1,9] and by Jardim and Figueiredo [5] share the
idea of describing the segmentation as an optimization process. They also share
the issue that the optimization can get stuck at local minima, which may pro-
duce low quality segmentation results in images presenting noise and/or missing
data. A constraint presented by both papers is the need of an initial guess by
the user, yielding a semi-automatic system. Nevertheless, these papers present
results that are of comparable accuracy as sonographers in small datasets (less
than 50 images) of fetal heads and femurs. A common point among the papers
above is that they did not work on the segmentation of fetal abdomen.

In echocardiography, the detection and segmentation of the left ventricle of
the heart in ultrasound images have produced similar algorithms based on an
optimization process [14]. The issue of the arbitrary initial condition has been
handled with the use of level sets [8], and the robustness to noise and missing
data has been managed by the use of a shape influence term [10]. However,
these methods still present some basic issues, such as the under utilization of
the appearance model because of the use of relatively simple parametric models
for the appearance term in the optimization function. Also, these techniques tend
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a) search parameters b) PBT

Fig. 1. Image region with five parameters (a) and the PBT tree structure (b)

to work well whenever image gradients separate the sought anatomical structure,
but that might not be the case for complex anatomies (e.g., fetal abdomens).

The method we propose in this paper is aligned with the state-of-the-art de-
tection and high-level segmentation methods proposed in computer vision and
machine learning. These methods involve user annotated training data, discrim-
inant classifiers of local regions, and a way to combine the results of those local
classifiers [6,3]. We exploit the database-guided segmentation paradigm [3] in
the domain of fetal ultrasound images. This domain presents common issues en-
countered in ultrasound images, such as large amount of noise, signal drop-out
and large variations between the appearance, configuration and shape of the
anatomical structure. However, our method has to handle new challenges pre-
sented by fetal ultrasound images, such as the extreme appearance variability of
the fetal abdomen imaging as well as to be easily generalized to all anatomical
structures. In order to cope with these new challenges, we constrain the recently
proposed probabilistic boosting tree classifier [12] to limit the number of nodes
present in the binary tree, and also to divide the original classification problem
into stages of increasing complexity.

3 Automatic Measurement of Fetal Anatomy

In this section we define the segmentation problem and explain the training
and detection processes used for the process of automatic segmentation and
measurement of fetal anatomies.

3.1 Problem Definition

The ultimate goal of our system is to compute the probability that an image
region contains the sought structure of interest. An image region is represented
by a set of N image features (here we use the Haar wavelet features [7,13]
computed using integral images), so we define the vector I ∈ �N as follows:

I = f(θ), (1)

where θ = [x, y, α, σx, σy ] with the parameters (x, y) representing the top left
region position in the image, α denoting orientation, (σx, σy), the region scale
(see Fig. 1-(a)), and the function f(θ) computes the N image features in the
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region. Note that with these parameters, the ellipsoidal measurements for HC
and AC are computed with a set of M points as follows: {(x + rσx cosα cos γ +
rσy sin α sin γ, y − rσx sin α cos γ + rσy cosα sin γ)}, where γ = j 2π

M with j =
{0, ..., M − 1}, r = 0.75, and the line measurements for BPD and FL are de-
fined by the two end points of line:{(x + rσi cos(α + γ), y + rσi cos(α + γ))},
where r = {−0.75, +0.75}, for FL, i = x and γ = 0, and for BPD, i = y
and γ = π/2. A classifier then defines the following function: P (y|I), where
y ∈ {−1, +1} with P (y = +1|I) representing the probability that the im-
age region I contains the structure of interest (i.e., a positive sample), and
P (y = −1|I), the probability that the image region I contains background in-
formation (i.e., a negative sample). Notice that the main goal of the system is
to determine θ∗ = arg maxθ P (y|f(θ)). Therefore, our task is to train a discrim-
inative classifier that minimizes the probability of mis-classification.

3.2 Constrained Probabilistic Boosting Tree

The classifier used for the anatomical structure detection is derived from the
probabilistic boosting tree classifier (PBT) [12]. Training the PBT involves the
recursive construction of a tree, where each of its nodes represents a strong
classifier. The input training set for each node is divided into two sets (left or
right) according to the result provided by the learned strong classifier. Each new
set is then used to train the left and right sub-trees recursively. The posterior
probability that a sample is positive is computed as follows [12]:

P (y = +1|I) =
∑

l1,l2,...,ln

P (y = +1|ln, ..., l1, I)...P (l2|l1, I)P (l1|I), (2)

Fig. 2. Expert annotation of (left to right): BPD, HC, AC, and FL

where n is the total number of nodes of the tree (see Fig. 1-(b)). The original
PBT classifier presents a problem: if the classification is too hard, two problems
may occur: a) overfit of the training data in the nodes close to the leaves and
b) long training and detection procedures. As a result, in order to reduce the
training and detection times and improve the generalization ability of the classi-
fier, we propose the Constrained PBT (CPBT) algorithm, which constrains the
original PBT training process as follows: a) instead of having only one classifier,
we train a sequence of classifiers with increasing complexity; and b) given that the
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Algorithm 1. Training algorithm.
Data : Set of training images with respective true positive parameter {(I, θ

+
I

)i}i=1,..,M
Coarse search sampling interval δcoarse
Height Hcoarse of the Coarse classifier tree and total number of nodes Ncoarse
Fine search sampling interval δfine
Height Hfine of the Fine classifier tree and total number of nodes Nfine

I+ = ∅ and I− = ∅
for i = 1, ..., M do

Generate P positives samples by randomly sample the parameter space with

θ̃
+
I

∈ [θ+
I

− δcoarse, θ
+
I

+ δcoarse] and add these samples to the set of positive samples I+

Generate N negative samples by randomly sample the parameter space with

θ̃
−
I

�∈ [θ+
I

− δcoarse, θ
+
I

+ δcoarse] and add these samples to the set of negative samples I−

end

Train coarse classifier of height Hcoarse and number of nodes Ncoarse using I+ and I−.
I+ = ∅ and I− = ∅
for i = 1, ..., M do

Generate P positives samples by randomly sample the parameter space with

θ̃
+
I

∈ [θ+
I

− δfine, θ
+
I

+ δfine] and add these samples to the set of positive samples I+

Generate N negative samples by randomly sample the parameter space with

θ̃
−
I

�∈ [θ+
I

− δfine, θ
+
I

+ δfine] and θ̃
−
I

∈ [θ+
I

− δcoarse, θ
+
I

+ δcoarse] and add these samples to the set

of negative samples I−
end

Train fine classifier of height Hfine and number of nodes Nfine using I+ and I− .
Result : Coarse and fine classifiers.

classification problem of each classifier is simpler than the original problem, the
height and the number of tree nodes are constrained.

3.3 Training a Constrained PBT

Figure 2 shows expert annotations of fetal measurements. Note that this anno-
tation explicitly defines the parameter θ+

I for the true positive sample of the
training image (1). Figure 3 shows image regions returned by sampling the pa-
rameter space with θ+

I for several training images.
As mentioned in Sec. 3.2, the training processes involves a two stage classi-

fication problem of increasing complexity (see Alg. 1). The first stage, referred
to as coarse stage, is robust to false negatives, but it accepts a relatively large
number of false positives, while the second stage, which is called fine stage, is
more selective, being robust to false positives.

Fig. 3. Examples of the training set for BPD and HC (first three images), AC (images
4-6), and FL (last three images)

3.4 Detection

The detection algorithm also runs in two stages, as described in Algorithm 2.
The coarse detection samples the search space uniformly using the δcoarse as the
sampling interval, while the fine detection searches the hypotheses selected from
the coarse search at smaller intervals of δfine.
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Algorithm 2. Detection algorithm.
Data : Test image and anatomy to be detected

Coarse and fine classifiers
Measuremet to be performed (BPD, HC, AC, or FL)

Hcoarse = ∅
for θ = [0, 0, 0, 0, 0] : δcoarse : max(search space) do

Sample image region I = f(θ) (1)
Compute P (y = +1|I) (2) using coarse classifier
Hcoarse = Hcoarse

�
(θ, P(y = +1|I))

end
Assigned the top H hypotheses from Hcoarse in terms of P (y = +1|I) to Hfine
for i = 1, ..., H do

Assume (θi, Pi) = ithelement of Hfine
for θ = (θi − δcoarse) : δfine : (θi + δcoarse) do

Sample image region I = f(θ) (1)
Compute P(y = +1|I) (2) using fine classifier
Hfine = Hfine

�
(θ, P(y = +1|I))

end
end
Select the top hypothesis from Hfine in terms of P (y = +1|I).
Result : Parameter θ of the top hypothesis.

3.5 Training Results

We have 1, 426 expert annotated training samples for head, 1, 168 for femur, and
1, 293 for abdomen. A coarse and a fine CPBT classifiers were trained, each with
six levels. We are interested in determining the tree structure of the classifier,
where we want to constrain the tree to have the fewest possible number of nodes
without affecting the classifier performance. Recall from Sections 3.3 and 3.4
that the fewer the number of nodes, the more efficient the training and the
detection algorithms. Here, we compare the performance of the full binary tree
against a tree constrained to have only one child per node. The number of weak
classifiers in each node is arbitrarily set at between 10 and 300 depending on
the tree structure (full binary tree classifiers usually uses fewer weak classifiers
to avoid over-fitting). The sampling interval for the training algorithm 1 is set
as δcoarse = [20, 20, 20, 20, 20], and δfine = [10, 10, 10, 10, 10]. These two vectors
contain the variation for each dimension of the parameter space (i.e., position
(x, y) in pixels, orientation α in angles, and scale (σx, σy) in pixels). Note that
these sampling intervals were set based on experiments ommited in this paper
due to lack of space. Finally in Algorithm 1, the number of additional positives
per image P = 100 and the number of negatives per image N = 1000.

In Fig. 4 we see the measurement errors for HC and BPD in the training for
the constrained tree and the full binary tree. Assuming that the GT contains
the expert annotation and DT denotes the automatic measurement produced
by the system, the error is computed as:

error = |GT − DT |/GT. (3)

Notice that the performance of the constrained tree is better than that of the full
binary tree for the parameters. This is explained by the fact that the constrained
tree is more regularized and should be able to generalize better than the full
binary tree. Another key advantage of the constrained tree is the efficiency in
training. For the cases above, the training process for the full binary tree takes
between seven to ten days, while for the constrained tree the whole training
takes two to four days on a standard PC computer. Hence, a constrained tree
classifier should be used in the experiments.
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Fig. 4. Training error (3) comparison between cascade and full binary tree
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Fig. 5. Error (3) in ascending order for each anatomy in the training and test sets.
The horizontal axis is normalized to vary from zero to one.

4 Experimental Results

In this section we show qualitative and quantitative results of the database-
guided image segmentation based on the CPBT classifier. Using the detection
algorithm described in Sec. 3.5, which was trained using the training set listed
in Sec. 3.5 for each anatomy, we compute the error in a test set composed
of 177 ultrasound images of fetal head, 183 of fetal abdomen, and 171 of fetal
femur. Fig. 5 shows the error in ascending order for each anatomy in the training
and test sets. Table 1 displays the median and mean errors for the training
and test sets. The running time for this algorithm is under half second for all
measurements on a standard dual-core PC computer. Finally, Fig. 6 displays a
few segmentation results produced by our method.

This system was extensively tested in a clinical setting of ultrasound exami-
nations. In this experiment, we noticed that 20% of the cases show a relatively
large error. Since these cases can be considered to be outliers, we left them out
of the following results. The results showed that in the remaining 80% of the
test cases, the system produced an average error of 0.0265 (3) with respect to a

Table 1. Median and mean errors (3) of each one of the measurements

Measurement BPD HC AC FL

median error in training set 0.0249 0.0187 0.0277 0.0241

median error in test set 0.0269 0.0211 0.0319 0.0316

mean error in training set 0.0306 0.0225 0.0399 0.0668

mean error in test set 0.0333 0.0247 0.0479 0.0588
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ground truth measurement computed as the average of the measurement of 15
experts in hundreds of images presenting fetal heads, femurs, and abdomens. It
is important to mention that the average error between the users’ measurements
and the same ground truth was exactly 0.0265.

a) BPD b) HC

c) AC d) FL

Fig. 6. Detection and segmentation results

5 Conclusions

We presented a system that automatically measures the BPD and HC from ul-
trasound images of fetal head, AC from images of fetal abdomen, and FL in
images of fetal femur. Our system uses a large database of expert annotated
images in order to train a Constrained Probabilistic Boosting Tree classifier. We
showed that this system is capable of handling previously unsolved issues in the
domain of fetal ultrasound imaging, such as the effective abdomen segmentation,
and completely automated measurement procedure without user assistance. The
results show that our system produces accurate results, and the clinical evalu-
ation shows results that are, on average, close to the accuracy of sonographers.
Moreover, the algorithm is extremely efficient and runs in under half second on
a standard dual-core PC computer. Finally, the clinical evaluation also showed
a seamless integration of our system into the clinical workflow.
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