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Abstract

Many natural objects vary the shapes as linear com-
binations of certain bases. The measurement of such de-
formable shapes is coupling of rigid similarity transforma-
tions between the objects and the measuring systems and
non-rigid deformations controlled by the linear bases. Thus
registration and modeling of deformable shapes are coupled
problems, where registration is to compute the rigid trans-
formations and modeling is to construct the linear bases.
The previous methods [3, 2] separate the solution into two
steps. The first step registers the measurements regard-
ing the shapes as rigid and the deformations as random
noise. The second step constructs the linear model using
the registered shapes. Since the deformable shapes do not
vary randomly but are constrained by the underlying model,
such separate steps result in registration biased by non-
rigid deformations and shape models involving improper
rigid transformations. We for the first time present this
bias problem and formulate that, the coupled registration
and modeling problems are essentially a single factoriza-
tion problem and thus require a simultaneous solution. We
then propose the Direct Factorization method that extends a
structure from motion method [16]. It yields a linear closed-
form solution that simultaneously registers the deformable
shapes at arbitrary dimensions (2D → 2D, 3D → 3D,
. . .) and constructs the linear bases. The accuracy and ro-
bustness of the proposed approach are demonstrated quan-
titatively on synthetic data and qualitatively on real shapes.

1 Introduction

The inter- and intra-variability are often inherent in bio-
logical or biomedical object shapes or dynamic scene struc-
tures. For example, the shapes of human faces involve both
inter-variability across individual persons of different ages,
genders, and races, and intra-variability across different ex-
pressions. Similar variabilities also occur in objects such as
beating hearts, growing tumors, and dynamic scenes includ-
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ing moving cars or pedestrians. With the expeditious de-
velopment of computer and sensor technologies, statistical
modeling of such deformable shapes has shown enormous
importance for many tasks in computer vision and medi-
cal image interpretation, e.g. segmenting the 2D MRI brain
images [14], tracking the myocardial wall motion from the
3D ultrasound images [2, 9], and tracking and recognizing
human faces from 2D videos [3, 4, 5].

Each of the statistical models is constituted by a num-
ber of bases, of which the linear combinations comprise the
deformable shapes. Constructing such a model usually re-
quires a collection of pose-free shapes that involve purely
the non-rigid deformations. Since the sensors measure the
shapes with respect to respective local coordinate systems,
e.g. from different view directions, the measured shapes are
composed of both the non-rigid deformations controlled by
the linear bases and the rigid similarity transformations rela-
tive to the local coordinate systems. Constructing the model
from the measured shapes requires that the measurements
are registered into a common coordinate system such that
the rigid pose variations are eliminated. On the other hand,
the statistical parameterization of the shape models provides
global constraints that allow the shapes to vary only in a
limited number of styles. Fitting the models to the mea-
surements has achieved robust performance in registering
deformable shapes [3, 2]. Thus registration and modeling
of deformable shapes are coupled as chicken-egg problems.

The previous methods [3, 14, 9, 2] proposed to solve
the coupled problems separately in two consecutive steps.
The first step registers the measured shapes, where Gener-
alized Procrustes Analysis [7, 8, 10, 11, 15] has been widely
used. This technique treats the deformable shapes as a rigid
shape contaminated by Gaussian noise, and iteratively reg-
isters the individual shapes with a common reference shape
that is the mean of the already-registered shapes. The it-
eration stops when a stable mean shape is achieved. The
second step then extracts the linear deformable model from
the registered shapes using Principal Component Analysis.

Generalized Procrustes Analysis is a perfect fit for reg-
istering rigid shapes, of which the variations come from ei-
ther the similarity transformations or the noise. However
it results in registration of deformable shapes biased by the



non-rigid deformations, because the deformable shapes do
not vary randomly but the deformations are constrained by
the underlying linear model. Specifically, when the defor-
mations are insignificant, i.e. the mean shape is dominant
compared with the deformations, or when they are symmet-
ric with respect to the mean shape, i.e. the positive and
negative offsets cancel each other, they can be regarded as
Gaussian noise and Generalized Procrustes Analysis works
successfully on registering the deformable shapes. In prac-
tice the shape deformations are often significant and asym-
metric, e.g. a dynamic scene consisting of static buildings
and moving cars, or two eyes blinking asynchronously. Un-
der such situations, the deformations cannot be regarded
as Gaussian noise and the linear deformable model has to
be taken into account. By attenuating the deformations
as denoising, Generalized Procrustes Analysis leads to the
registered shapes still containing rigid similarity transfor-
mations. Thus the registration is incomplete and conse-
quentially the linear model constructed from the registered
shapes does not describe purely the shape deformations.

This paper for the first time points out this bias prob-
lem and formulates that, registration and modeling of de-
formable shapes are essentially a single factorization prob-
lem and thus have to be solved simultaneously. The sim-
ilar factorization problem has attracted many interests re-
cently for solving the problem of 3D reconstruction of non-
rigid structures from 2D images [1, 16]. This paper extends
the method in [16] and develops the Direct Factorization
method that simultaneously registers the measured shapes
and extracts the underlying model. Following the idea in
[16], this method enforces linear constraints on orthonor-
mality of the rigid rotations and on uniqueness of the linear
bases and yields a linear closed-form solution. However our
method is different from the method in [16]. The presented
method aims at registering deformable shapes generally at
arbitrary dimensions (2D → 2D, 3D → 3D, . . .), while
the method in [16] is for structure from motion (2D → 3D
only). Note that besides presenting the Direct Factorization
method, the more important contributions of this paper are
to point out the bias problem of the separate two-step solu-
tion and to propose the simultaneous factorization formula-
tion for the coupled registration and modeling problems.

2 The Coupled Registration and Modeling
Problems

This paper regards the shape of a deformable object as a
linear combination of K shape bases {Bk, k = 1, ...,K}.
Each basis is a D × P matrix, with the same dimension
as the shape. They direct the P points on the shape to al-
ter the locations in the D-dimensional object shape space.
Accordingly the coordinate of the shape at time i is,

Si =
K

Σ
k=1

likBk (1)

where lik is the combination weight of the basis Bk. The
deformable shape is often measured from different views, in
different distances, and at different scales, i.e. with respect
to different coordinate systems. Thus the measured shape is
a similarity transformation of the shape Si,

Wi = ciRiSi + Ti · 1 (2)

where ci is a nonzero scalar, Ri is a D × D orthonormal
matrix, and Ti is a D×1 vector. They respectively stand for
the scaling, rotation, and translation transformations, and
together form the similarity transformation. 1 is a 1 × P
vector, of which all elements are 1s.

Given a collection of N observations of such deformable
shapes, we would like to register them to recover the sim-
ilarity transformations (ci, Ri, and Ti) with respect to the
constraint in Eq. (1), and extract from them the underly-
ing bases Bk and coefficients lik with respect to the con-
straint in Eq. (2). Therefore registration and modeling of
deformable shapes are coupled chicken-egg problems.

3 The Bias Problem of the Separate Two-Step
Method

The previous solutions to the coupled registration and
modeling problems generally consist of two separate steps
[3, 14, 9, 2]. The first step registers the deformable
shape measurements using Generalized Procrustes Analy-
sis (GPA) [7, 15] and the second step computes the linear
bases from the registered shapes using Principal Compo-
nent Analysis (PCA).

GPA was originally developed for registering rigid
shapes contaminated with Gaussian noise. When the shapes
are deformable, GPA regards the non-rigid deformations as
part of the noise and estimates the similarity transforma-
tions by minimizing the following objective function,

(c̃, R̃, T̃ ) = argmin
c,R,T

N

Σ
i=1

‖ciRiSi + Ti − SC‖2 (3)

where SC stands for the centroid shape, i.e. average of the
aligned shapes in the previous iteration. The optimization
is achieved using an iterative algorithm as follows,

1. Specify one of the shapes as the initial centroid shape SC .
2. Estimate the similarity transformation between each shape

and SC using Orthogonal Procrustes Analysis (OPA) [13].
3. Align the shapes using the estimated similarity transforma-

tions and update SC as the average of the registered shapes.

The last two steps are repeated until a least square solution
is converged. The least square solution will be biased from
the true answer when the noise is not symmetric, i.e. the
positive and negative variances between the noisy data and
the ground truth do not cancel each other. Since the opti-
mization process does not take into account the deformable
model, i.e. Eq. (3) is not minimized with respect to the con-
straint in Eq. (1), the measured shapes are registered with
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Figure 1. Three settings of one rectangle
staying static and two rectangles moving
along straight lines. (1a∼1c) Ground truth
shapes. (2a∼2c) Registered shapes by Gen-
eralized Procrustes Analysis.

the rigid centroid shape and the deformations are regarded
as noise. Thus when the deformations are asymmetric with
respect to the centroid shape, the accuracy of the recovered
similarity transformations will be “sacrificed” to minimize
the registration error according to Eq. (3). In another word,
even though GPA minimizes the registration errors, the re-
covered rigid similarity transformations are biased from the
true answer such that the registered shapes are more rigid,
i.e. contain fewer deformations, than the true deformable
shapes. Consequentially the deformable model constructed
using such registered shapes in the second step does not rep-
resent purely the desired deformable shapes.

We demonstrate the bias problem using simple 2D ex-
amples in three noiseless settings. In these examples, the
2D shape consisted of three rectangles, represented by the
12 corners. The middle rectangle was static. The top one
moved up and the right one moved right simultaneously
along straight lines. Fig.1.(1a) shows the first setting, where
the two rectangles moved at the same speed, i.e. the shapes
deformed symmetrically. The blue lines refer to the initial
shape and the red ones stand for the shape deformations.
6 shapes were observed from different views. We applied
GPA to estimate the transformations between the measured
shapes. As shown in Fig.1.(2a), the registered shapes were
exactly the same as the ground truth shapes with zero errors.

In the second example, the speed of moving up was
slightly different from that of moving right, i.e. the defor-
mations were slightly asymmetric, as shown in Fig.1.(1b).
6 measured shapes from different views were aligned by
GPA. As shown in Fig.1.(2b), the registered shapes were
slightly different from the ground truth. The average reg-
istration error on the shapes was 2.63%. The third set-
ting contained strongly asymmetric shape deformations,
i.e. the two speeds were very different, as shown in
Fig.1.(1c). These shapes were observed as is, without any

similarity transformation. Fig.1.(2c) demonstrates that GPA
yielded notable registration errors, of which the average was
12.18%. The aligned shapes were rotated and they did not
move straightly, while the true shapes did not rotate and the
true trajectories were straight lines. These experiments con-
firm that, GPA achieves biased registration of the non-rigid
shapes that contain asymmetric deformations. The stronger
the asymmetry, the greater the registration error.

4 Simultaneous Registration and Modeling

4.1 The Factorization Formulation

To address the bias problem, in this section we reformu-
late the coupled registration and modeling problems. We
first rewrite Eq. (2) by replacing Si using Eq. (1) and ab-
sorbing ci into lik,

Wi = ( li1Ri . . . liKRi Ti ) ·




B1

...
BK

1


 (4)

We stack all the N shape measurements into a DN × P
matrix W . Each of the N D-rows in W contains a measured
shape respectively. Due to Eq. (4), since all the measured
shapes refer to the same set of shape bases, we have,

W = M · B + T · 1 (5)

where M is a DN × DK scaled rotation matrix, B is a
DK×P basis matrix, and T is a DN×1 translation vector,

M =




l11R1 . . . l1KR1

...
...

...
lN1RN . . . lNKRN




B =




B1

...
BK


, T =




T1

...
TN




(6)

The coupled problems of deformable shape registration
and modeling are now reformulated into a single factoriza-
tion problem, i.e. how to factorize the measurement matrix
W to simultaneously recover the rigid similarity transfor-
mations in M and T and reconstruct the linear bases in B.

4.2 The Direct Factorization Method

The similar factorization problem has been studied ex-
tensively for 3D reconstruction of non-rigid structures from
2D images [1, 16]. In this section we extend the method in
[16] and develop a Direct Factorization method that simul-
taneously solves the registration and modeling problems.

Following the idea in [16], we position the coordinate
origin at the center of the measured shape. Then the trans-
lations in T equal the average coordinates over the shape.



Subtracting them from the measurements, we have that
W̃ = W −T ·1 = M ·B. According to Eq. (6), the rank of
W̃ is min{DK,DN,P}. In general the shape number N
and point number P are much larger than the basis number
K such that DN > DK and P > DK. The rank of W̃ is
thus DK and K is determined by K = rank(W̃ )

D .
Using Singular Value Decomposition (SVD), we decom-

pose W̃ into the product of a DN × DK matrix M̃ and a
DK ×P matrix B̃. This decomposition is only determined
up to a non-singular DK × DK linear transformation G.
The true scaled rotations M and bases B are of the forms,

M = M̃ · G, B = G−1 · B̃ (7)

G consists of K D-columns, denoted as gk, k = 1, . . . ,K.
They are DK × D matrices and independent on each other
since G is non-singular. According to Eq. (6,7), gk satisfies,

M̃gk =




l1kR1

...
lNkRN


 (8)

M̃ consists of N D-rows, denoted as M̃i, i = 1, . . . , N .
Each of them is a D × DK matrix. Let Qk denote the
DK × DK symmetric matrix gkgk

T . Then,

M̃iQkM̃T
j = likljkRiR

T
j , i, j = 1, ...N (9)

As in [16], computing Qk requires imposing two types
of constraints. First, due to orthonormality of the rotations,

M̃iQkM̃T
i = l2ikID×D, i = 1, ..., N (10)

where ID×D is a D × D identity matrix. The D diagonal
elements of Eq. (10) are equivalent and yield D − 1 lin-
ear constraints on Qk. The off-diagonal elements are all
zeros. Since Qk is symmetric, Eq. (10) provides D2−D

2
linear constraints. From N measured shapes we obtain
N
2 (D2 + D − 2) linear constraints.

As shown in [16], since any non-singular linear transfor-
mation applied on the deformable bases leads to another set
of eligible bases, enforcing the orthonormality constraints
alone is inherently insufficient and results in ambiguous and
invalid solutions. Thus it is necessary to enforce the second
constraints that ensure the uniqueness of the bases. Similar
to [16], we need to determine K measured shapes that con-
tain independent deformable shapes, i.e. after registration
the K shapes without rigid transformations are independent
on each other. Such independence is measured by the condi-
tion number of the DK×P sub-matrix of W̃ corresponding
to the K shape measurements. A smaller condition number
refers to stronger independence.

We compute the condition number of each possible set
of K measured shapes and select the set with the smallest
condition number, which contains the most independent K

deformable shapes. Since any K independent shapes in the
linear shape space form a set of eligible bases, we specify
the deformable shapes contained in the selected K measure-
ments as the unique bases. In another word, the selected K
measurements are the respective scaled and rotated shape
bases. Since scaling does not influence the independence of
the shapes, we absorb the scalars into the bases and then the
chosen K basis measurements are simply the rotated bases.
Note that so far we have not recovered the bases, but only
determined their measurements after unknown rotations.

We denote the selected K measurements as the first
K measurements in the data set, i.e. W̃i = RiBi, i =
1, . . . ,K. The corresponding coefficients are thus,

lii = 1, i = 1, ..., K

lij = 0, i, j = 1, ..., K, i �= j (11)

According to Eq. (9,11), we have,

M̃iQkM̃T
j =




ID×D, i = j = k

0D×D, (i, j) ∈ Φ
(12)

where Φ means {(i, j)|i = 1, ...,K; j = 1, ..., N ; i �= k}.
Similar to the proof in [16], we prove that solving both

the linear equations in Eq. (10) and (12) leads to a closed-
form solution of Qk = gkgT

k , k = 1, . . . , K. We then re-
cover gk by decomposing Qk via SVD. The decomposition
of Qk is up to an arbitrary D × D orthonormal transforma-
tion Ψ, since (gkΨ)(gkΨ)T also equals Qk. This ambiguity
arises from the fact that g1, . . ., gK are estimated indepen-
dently under different coordinate systems. To resolve the
ambiguity, we need to transform g1, . . ., gK to be under a
single reference coordinate system.

Due to Eq. (8), M̃igk = likRi, i = 1, . . . , N . Because
the rotation matrix Ri is orthonormal, i.e. ‖Ri‖ = 1, we

have Ri = ± M̃igk

‖M̃igk‖ . The sign is determined by the orien-

tation of the reference coordinate system. We compute K
sets of rotations using g1, . . ., gK respectively. Because of
the decomposition ambiguity, there is a D × D orthonor-
mal transformation between each two sets. We specify one
of the rotation sets as the reference. The signs of the other
rotations are determined such that they are consistent with
the corresponding reference rotations. The orthonormal
transformations are computed by OPA [12] to transform the
signed rotation sets to the reference set. They also trans-
form g1, . . ., gK to be under a common coordinate system,
i.e. the desired transformation G is achieved. The coeffi-
cients are then computed by Eq. (8), and the shape bases
are recovered by Eq. (7). Their combinations reconstruct
the true deformable shapes without rigid transformations.

Our algorithm is summarized as follows,

1. Compute the translation T as the average of the measure-
ments W and then eliminate it by W̃ = W − T · 1.
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Figure 2. Three settings of one rectangle
staying static and two rectangles moving
along straight lines. (1a∼1c) Ground truth
shapes. (2a∼2c) Registered shapes by the
Direct Factorization method.

2. Perform SVD to determine the rank of W̃ that dominates the
energy. The basis number K is computed by rank(W̃ )/D.

3. Determine the K basis measurements, reorder W̃ , and com-
pute rank-DK approximation of W̃ = M̃B̃ by SVD;

4. Compute Qk, k = 1, ..., K by solving the linear equations
in Eq. (10) and (12) via the least squares method.

5. Calculate gk, k = 1, ..., K via SVD, then recover the rota-
tions by Eq. (8) and transform them to a common coordinate
system using OPA.

6. Recover the linear bases by Eq. (7) and the coefficients by
Eq. (8). Their combinations reconstruct the registered de-
formable shapes.

It is not necessary to check all possible K shape measure-
ments and specify the most independent deformable shapes
as the bases. When the number of measurements is large,
we can save the computational cost by only searching for K
measurements with a condition number below certain small
threshold. Note that when the basis number K is set as 1,
the Direct Factorization method also regards the deformable
shapes as a rigid shape contaminated with random noise and
achieves the least square registration similar as GPA in the
two-step method does. The only difference between their
solutions is that GPA uses the mean shape and the Direct
Factorization method computes the most dominant shape
mode as the reference for registration. Thus the two-step
method is a special case of the Direct Factorization method
where the shapes are assumed rigid.

5 Performance Evaluation

The performance of the proposed method was evaluated in
a number of experiments.

5.1 Accuracy on Noiseless Examples

We first tested the proposed method on the simple noise-
less examples described in Section 3. These settings in-
volved 2 bases, since the two rectangles simultaneously
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Figure 3. Registration and reconstruction er-
rors on rotations and shapes under differ-
ent noise levels and basis numbers. (a)&(b)
By Direct Factorization. (c)&(d) By separate
two-step method. Each curve refers to a
noise level. The scalings of the error axis are
[0◦, 30◦] for rotations and [0%, 50%] for shapes.

moved along straight lines. One basis referred to the ini-
tial shape and another stood for the linear motion vector.
The Direct Factorization method automatically determined
K = 2. It yielded the registered shapes identical to the
ground truth with zero errors, no matter whether the shape
deformations are symmetric or asymmetric, as shown in
Fig.2. When the shape deformed asymmetrically, in con-
trast to the crooked point trajectories of the registration by
GPA, our method recovered the 2-basis deformable model
that reconstructed the accurate linear trajectories.

5.2 Quantitative Evaluation

We then quantitatively evaluated the accuracy and ro-
bustness of the Direct Factorization method with respect
to different measurement noise levels and basis numbers.
Assuming a Gaussian white noise, we represent the noise
strength by the ratio between the Frobenius norms of the
noise and the measurements, ‖noise‖

‖W̃‖ . The algorithm was

tested under 5 different noise levels, 0%, 5%, 10%, 15%,
and 20% respectively. On each level, we examined the rigid
settings involving 1 basis and the non-rigid settings involv-
ing 2, ... , and 10 bases respectively in the 2D space.

For each of the settings, we tested 100 trials. At each
trial, the bases were randomly generated and normalized
(‖Bi‖ = 1). Thus they were generally asymmetric. 66
shapes were constructed as linear combinations of the bases.
The combination weights were randomly generated in such



(a) (b) (c)

(d) (e) (f)

Figure 4. Registration and modeling of 2D
face shapes carrying various expressions.
(a∼c): Three face images and shapes. (d):
shape measurements after subtracting the
translations. (e,f): Reconstructed 3-basis de-
formable shapes by Direct Factorization and
the two-step method respectively. Their re-
sults were comparable because the deforma-
tions were similar to Gaussian noise.

a way that the weights for different bases had the same or-
der of magnitude, i.e. none of the bases was dominant.
These shapes were then randomly scaled, rotated, trans-
lated, and contaminated with noise to generate the mea-
surements. Since the bases equally contributed to the shape
composition, the bigger the basis number, the more “non-
rigid” the shapes and the stronger the noise relative to each
individual basis. Thus, in general, the registration is more
sensitive to the noise when more bases were involved.

The shape measurements were registered by the pro-
posed method and GPA respectively. Their average regis-
tration errors on the rigid rotations are shown in Fig.3.(a, c).
Because the space of rotations is a manifold, the errors were
measured as the Riemannian distance, d(Rest, Rtruth) =
arccos( trace(RestR

T
truth)

2 ), in degrees. To compare the
modeling performance with the separate two-step method,
the registered shapes by GPA were used to reconstruct the
shape model and the true deformable shapes using PCA.
The relative reconstruction errors on shapes were computed
as, ‖Reconstruction−Truth‖

‖Truth‖ , as shown in Fig.3.(b, d).

When the noise level was 0%, the Direct Factorization
method always recovered the exact rigid rotations and the
true deformable shapes with zero errors. When noise was
imposed, as expected, the registration was more sensitive to
the noise and the errors were greater when the basis number
was bigger. Yet our method achieved reasonable accuracy,
e.g. in the worst case of 10 bases and 20% of the noise
level, the average error on shapes was less than 18% and
that on rotations was less than 7.5 degrees. In the rigid
settings, both methods treated the shapes as rigid and the
deformations as Gaussian noise. Their performances were

(a) (b) (c)

(d) (e) (f)

Figure 5. Registration and modeling of 2D
face shapes, where the right eye lid and brow
opened up, the left ones closed down, and
the rest were mostly static. (a): Measured
shapes. (d): Underlying bases: the initial
shape and the linear motions. (b,e): Correct
registration of the shapes and reconstruction
of the 2-basis model by Direct Factorization.
(c,f): Distorted registration and modeling by
the two-step method.

almost identical. In the non-rigid trials the two-step method
was always outperformed. Even in the noiseless cases, it
yielded notable errors, 22% on shapes and 11 degrees on ro-
tations. The errors by the two-step method were also bigger
when the basis number was bigger. But its performance was
less sensitive to the noise, because GPA computes the least
squares solution that is insensitive to the Gaussian noise.

5.3 Qualitative Evaluation

Finally we examined our approach qualitatively on reg-
istering and modeling the shapes of three real deformable
objects: human faces, myocardium, and dynamic scenes.

Human faces are highly non-rigid objects. It has been
shown in [3] that the 2D images of the face shapes are linear
combinations of certain basis shapes. This linear statistical
model is important for tasks like face tracking and recogni-
tion. Our approach is capable of registering the deformable
face shapes and reconstructing the linear shape model. One
example is shown in Fig.4. The sequence consisted of 180
images that contained face rotations and facial expressions
like blinking and smiling. The 2D face shapes were repre-
sented by 68 feature points. Fig.4.(a∼c) display three of the
images. The shape points are marked with red circles.

Subtracting from the shape measurements the transla-
tions, i.e. the average coordinates, the measurements were
then composed of the deformations and the rotations. The
feature points of the translated measurements are shown to-
gether in Fig.4.(d). The number of bases was estimated
as 3 so that 99% of the energy could remain after the de-
composition according to the rank constraint. Then the
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Figure 6. Registration and modeling of 2D
myocardium shapes. (a∼c): Three my-
ocardium images and shapes. (d): Measured
myocardium shapes. (e,f): Reconstructed 3-
basis deformable myocardium shapes by Di-
rect Factorization and the two-step method.
Their results were comparable because the
deformations were nearly symmetric.

rigid rotations and the 3-basis linear deformable model were
computed using our method. The reconstructed deformable
shapes in the 3-basis shape space are shown in Fig.4.(e).
According to the shape point distributions in Fig.4.(d), the
variations of the point coordinates were insignificant and
their distributions were similar to Gaussian noise. There-
fore the two-step method was able to achieve comparable
registration and modeling, as shown in Fig.4.(f). The re-
constructed 3-basis deformable shapes preserved very little
rigid transformations. That is why the separate two-step
method worked successfully in [3, 4, 5].

Fig.5.(a) shows a stack of deformable face shapes, where
the deformations were asymmetric and not random: the
right eye lid and brow opened up and the left ones closed
down simultaneously. These shapes were observed from a
fixed view point, without any rigid transformations. The
measured shapes were thus composed of two linear bases
alone, as shown in Fig.5.(d). One is the initial shape (red cir-
cles) and the other is the linear motions (blue arrows). The
registered shapes by our method and GPA are demonstrated
in Fig.5.(b) and (c) respectively, where the blue circles rep-
resent the initial shape, the green ones refer to the last
shape, and the red ones mean the shapes in between. The
2-basis model reconstructed by our method and the two-
step method are displayed in Fig.5.(e) and (f). The registra-
tion and reconstruction by the two-step method apparently
involved rotations that did not occur in reality, while the
Direct Factorization method correctly registered the shapes
and reconstructed the deformable model.

Human organs such as heart and brain usually vary their
shapes dynamically or across persons. The statistical shape
models have been utilized for interpreting the images of

(a) (b) (c)

(d) (e) (f)

Figure 7. Registration and modeling of 3D
dynamic scene shapes. (a∼c): Three tex-
tured scene shape measurements, red lines
for static shapes and blue for moving trajec-
tories. (d): Ground truth shapes of the dy-
namic scene. (e): Exact reconstruction by Di-
rect Factorization. (f): Distorted reconstruc-
tion by the two-step method.

these objects in many applications. We tested the proposed
method on registering the shapes of myocardium in 2D
echocardiography images and extracting the linear shape
model. 120 myocardium images were captured. Three of
them are shown in Fig.6.(a∼c). Fig.6.(d) displays the 120
measured myocardium shapes after subtracting the transla-
tions. Our method determined the basis number as 3 and
recovered the rotations and the 3-basis deformable shapes,
as shown in Fig.6.(e). The most dominant basis occu-
pied about 90% of the total energy, i.e. the deforma-
tions were insignificant like random noise. In addition, the
shapes deformed somewhat symmetrically. Thus the two-
step method was able to achieve the comparable registra-
tion and modeling performance, as shown in Fig.6.(f). This
explains why the two-step method worked well in [2, 9].

3D modeling of dynamic scenes is important for tasks
like robot navigation and visual surveillance. When a 3D
scene consists of static buildings and vehicles or pedestri-
ans moving straight, its shape is a linear combination of
deformable bases. One example is shown in Fig.7. The se-
quence contained three toys moving along respective direc-
tions simultaneously, two on top of the table and one along
the slope. The rest of the scene were static. The scene shape
was composed of two bases, one for the initial shape and
another representing the linear motions.

Eighteen shapes were measured from different view
points, three of which with mapped texture are shown in
Fig.7.(a∼c). Red wireframes represent the static objects,
yellow ones refer to the moving objects, and blue lines stand
for the moving trajectories. Fig.7.(d) shows the ground truth
3D deformable shapes. Fig.7.(e) demonstrates that the 2-
basis dynamic scene shapes were correctly reconstructed by



the Direct Factorization method. Since the linear 3D mo-
tions were significant and asymmetric, the corresponding
shape deformations should not be treated as Gaussian noise.
Fig.7.(f) illustrates that the reconstruction by the two-step
method was apparently distorted with improper rotations,
e.g. the motion trajectories were “curved”, even for this sim-
ple setting where only 6 out of 32 shape points moved.

In these experiments when the basis number was forced
to be 1, i.e. regarding the shape as rigid and the deforma-
tions as noise, the rigid transformations and the registered
shapes computed by our method were almost the same as
those by the two-step method. This supports our analysis
that the two-step method is a special case of the Direct Fac-
torization method. Please refer to the supplementary videos
for more details about the experiments.

6 Conclusion and Discussion

This paper has studied the problems of registration and
modeling of deformable shapes. The previous methods sep-
arate the solutions into two steps and regard the deforma-
tions as Gaussian noise in the registration step. When the
deformations do not act like Gaussian noise but as linear
combinations of certain bases, the two-step methods result
in registration biased by non-rigid deformations and de-
formable models distorted by rigid transformations. We for
the first time point out this bias problem and propose the
formulation that the registration and modeling problems are
essentially coupled as a single factorization problem and re-
quire a simultaneous solution. We extend the method for
non-rigid structure from motion [16] and develop a Direct
Factorization method that simultaneously registers the de-
formable shapes and constructs the linear shape bases.

Currently the linear constraints on orthonormality of ro-
tation transformations and uniqueness of deformation bases
are enforced equivalently. However, the former constraints
come from all the measured shapes and the latter ones arise
from only the first K shapes. When noise exists, they might
have different stabilities and thus different importance to the
solution. Within either group of the constraints, the impor-
tance of individual constraints also varies because of noise
and outliers, such as missing data, associated with the mea-
surement. Currently we are exploring how to weight the
constraints properly to improve the accuracy and robust-
ness of the Direct Factorization method. Another benefit
of having different weights for the constraints is that we can
sample them to improve the efficiency of the algorithm.
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