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Abstract. Metric reconstruction of a scene viewed by an uncalibrated camera
undergoing an unknown motion is a fundamental task in computer vision. To
obtain accurate results all the methods rely on bundle adjustment, a nonlinear
optimization technique which minimizes the reprojection error over the structural
and camera parameters. Bundle adjustment is optimal for normally distributed
measurement noise, however, its performance depends on the starting point. The
initial solution is usually obtained by solving a linearized constraint through a
total least squares procedure, which yields a biased estimate. We present a more
balanced approach where in main computational modules of an uncalibrated re-
construction system, the initial solution is obtained from a statistically justified
estimator which assures its unbiasedness. Since the quality of the new initial solu-
tion is already comparable with that of the result of bundle adjustment, the burden
on the latter is drastically reduced while its reliability is significantly increased.
The performance of our system was assessed for both synthetic data and standard
image sequences.

1 Introduction

Reliable analysis of image sequences captured by uncalibrated cameras is arguably
the most significant progress in the recent years in computer vision. As the result of
the analysis a 3D representation of the scene is obtained, which then can be used to
acquire 3D models, generate new viewpoints, insert and delete objects, or determine
the ego-motion for visual navigation. The technology became mature enough to support
successful commercial ventures, such as REALVIZ or 2D3.

We follow a feature based approach toward uncalibrated image sequence analysis, in
contrast with the brightness-based direct methods which consider the information from
all the pixels in the image. Given an image sequence, first salient features are extracted
from each frame and tracked across frames to establish correspondences. The analysis
itself is a hierarchical process starting from groups of two or three images. Four main
processing modules can be distinguished (Fig. 1).
1. Projective structure recovery from the key frames.
2. Insertion of the intermediate frames through camera resectioning.
3. Alignment of the independently processed subsequences.
4. Autocalibration and metric upgrade of the global reconstruction.
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Fig. 1. The computational modules of an uncalibrated image sequence analysis system.
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There is a large variety of methods proposed for each processing step. This paper
will consider the most widely used techniques, described in [1], [4], [13], [14]. A non-
linear minimization problem has to be solved in each of the four modules, and most
often bundle adjustment, e.g. [5], [21], is employed. Bundle adjustment is based on a
sparse Levenberg-Marquardt procedure and minimizes the reprojection error over the
whole set of unknown parameters, i.e., the camera matrices and the 3D structure. When
the reprojection errors are normally distributed, bundle adjustment yields the optimal,
maximum likelihood estimates.

The performance of any nonlinear optimization depends on the quality of the initial
solution. Should this solution be too far from the true value, satisfactory convergence of
the nonlinear procedure is no longer guaranteed. The traditional way to obtain the initial
solution in the vision problems discussed here, is to apply a total least squares (TLS)
procedure to a linearized constraint. It is well known, however, that this simple solution
is biased since it fails to correctly account for the noise process that affects the linearized
measurements, e.g. [8, p.77]. An empirical technique to improve the reliability of the
linear solution is to first perform a normalizing transformation of the data [6].

In a more theoretical approach, the linearization process is analyzed and the esti-
mation problem is put on solid theoretical foundations. The estimates obtained at the
output of such methods are unbiased up to first order approximation. Kanatani’s renor-
malization [10, pp.267–294] was the first technique from this class and was applied to a
large variety of computer vision tasks. The heteroscedastic errors-in-variables (HEIV)
model based estimation [11], defines the estimation problem somewhat differently than
renormalization and has better numerical behavior. In this paper we show that by replac-
ing the initial TLS based estimation step with a statistically more rigorous technique is
advantageous and does not increase the amount of total computations. In fact, in some
of the cases it can eliminate the need for bundle adjustment.

In Section 2 the different approaches toward solving the minimization problems aris-
ing in uncalibrated image sequence analysis are discussed. In Section 3 the performance
of the four main modules are examined under two different initialization strategies:
TLS and HEIV. The performance is assessed for synthetic data, while in Section 4 two
standard image sequences are processed.

2 Nonlinear and Linear Minimization Techniques

Let mj , j = 1, ..., n, be the available measurements, i.e., assumed to be the unknown true
values additively corrupted with normal noise having covariance Cmj . In the estimation
process the true values are replaced with the corrected measurements m̂j , and the optimal
(maximum likelihood) estimates can be obtained by minimizing

JM =
1
2

n∑
j=1

(mj − m̂j)�C +
mj

(mj − m̂j) (1)

where C +
mj

is the pseudoinverse.
In the most straightforward approach, the dependence of the corrected measurements

m̂j on the parameter estimates β̂ is considered explicitly through a nonlinear vector
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valued function, i.e., m̂j = f j(β̂). The resulting unconstrained nonlinear optimization
problem is called bundle adjustment, and it is solved using the Levenberg-Marquardt
method taking also into account the sparseness of the problem [21]. For example, if the
m̂j-s are the measured image points corresponding to the unknown 3D points, projected
with cameras whose parameters are also unknown, the criterion (1) represents the sum
of squared geometric distances under the suitable Mahalanobis metric.

An alternative way of capturing the a priori geometrical information is to consider an
implicit relation (constraint), between m̂j and β̂, i.e., h(m̂j , β̂) = 0. The minimization
criterion (1) becomes

JM =
1
2

n∑
j=1

(mj − m̂j)�C +
mj

(mj − m̂j) +
n∑

j=1

η�
j h(m̂j , β̂) (2)

where ηj are the Lagrange multipliers. In most of the problems which arise in uncali-
brated image sequence analysis, this constraint can be written as

h(m̂j , β̂) = Φ (m̂j) θ(β̂) = 0, j = 1, ..., n . (3)

The data enters through the carrier matrix Φ, while the parameters are mapped through
the vector valued linearized parameter function θ. The linear manifold structure of (3) is
a consequence of the underlying projective geometry. Note that without loss of generality
we can have ‖θ‖ = 1.

The existence of (3) motivated the use of a simple linear approximation to obtain
θ̂, the estimate of the linearized parameters. This estimate can then be used as initial
solution for bundle adjustment. The total least squares (TLS) technique minimizing

JTLS =
n∑

j=1

∥∥∥Φ(mj)θ̂
∥∥∥2

(4)

i.e., the algebraic distance from the hyperplane with unit normal θ̂, is most often em-
ployed. The TLS estimator, however, is optimal only when all the rows φk of the carrier
matrix are corrupted with the same noise process, which must have covariance σ2I [22,
Sec. 8.2]. This is not true for the estimation problems under consideration even when
all Cmj

= σ2I , since the elements of the carrier matrix are nonlinear functions in the
measurements mj .

Analyzing the structure of the carrier matrix Φ reveals that the noise process which
has to be considered when (2) is minimized, is point dependent, i.e., heteroscedastic.
The heteroscedastic errors-in-variables (HEIV) estimator described in [11] takes into
account the nature of the noise process and finds θ̂ by solving iteratively the generalized
eigenproblem

∇
θ̂
JM = [S(θ̂) − C(θ̂)]θ̂ = 0 subject to ‖θ̂‖ = 1 (5)

where

S(θ̂) =
n∑

j=1

Φ(mj)�Σ̂
+
j Φ(mj) Σ̂j = θ̂

�
J�

Φ|m̂j
Cmj JΦ|m̂j

θ̂ (6)
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is the scatter matrix. The Jacobian matrices JΦ|m̂j
= ∂Φ(m̂j)/∂m̂j can be easily

computed since most of the elements of the carrier matrix have a multilinear structure.
The expression of the weighted covariance matrix is

C(θ̂) =
n∑

j=1

∑
k,l

ηkjηlj

[
∂φk(m̂j)

∂m̂j

]�
Cmj

[
∂φl(m̂j)

∂m̂j

]
ηj = Σ̂

+
j Φ(mj)θ̂

(7)

where φk is the kth row of Φ. The corrected measurements are

m̂j = mj − Cmj
JΦ|m̂j

θ̂Σ̂
+
j Φ(mj)θ̂ (8)

and analytical expressions for the covariances of the estimated parameters C θ̂ and the
corrected measurements Cm̂j are also available [11, Sec. 5.2].

In spite of being computed iteratively, the performance of the HEIV estimation is
not critically dependent of the initial choice of θ̂ in (5). Indeed, in most of the cases
using a random initial θ̂ suffices. A more accurate starting value can be obtained by
approximating the initial S(θ̂) and C(θ̂) from the available measurements mj and
their covariances Cmj

(usually taken as σ2I) [11, Sec. 5.6]. After each iteration the
measurements are corrected (8) and the Jacobian matrices are updated followed by
S(θ̂) and C(θ̂). Convergence is usually reached after 3-4 iterations. It can be shown
that θ̂ is an unbiased estimate at the first order approximation [11, Sec. 5.2].

The minimization criterion solved by the HEIV estimator is similar to that of the
Sampson distance [8, Sec. 15.4.3]. However, traditionally when the Sampson distance
is used, the solution is still obtained through the Levenberg Marquardt algorithm and
the Jacobian matrices are not updated at each step [8, pp. 387–388].

The parameter of interest in the optimization is β and not θ. Since at each iteration
of the HEIV estimation procedure the covariance of the current linearized parameter
estimates C θ̂ is available, θ̂ can be further refined by imposing the constraint of its
nonlinear dependence on β (3). This is achieved by projecting θ̂ under the metric induced
by C θ̂ on the nonlinear manifold in the space of β

β̂ = argmin
β

∥∥∥θ̂ − θ(β)
∥∥∥2

C θ̂

(9)

which is solved by linearization [11, Sec. 5.10]. The parameter estimate θ̂ can now be

updated as θ̂
(u)

= θ(β̂) and this value is used in the next iteration of the HEIV estimator.

3 Uncalibrated Image Sequence Analysis System

The reconstruction of the 3D scene in the system described in this paper is based on point
features detected in the images. The Harris corner detector was used, since it provides
the most stable features under a wide range of operating conditions [16]. The correspon-
dences across frames are established by the traditional normalized cross-correlation
technique.



Balanced Recovery of 3D Structure and Camera Motion 299

The first step in the analysis is to break down the sequence into several small groups of
key frames. Since the “local” estimation of the projective structure employs the trifocal
tensor, each group has three key frames. Given the first frame, the second and third
frames are chosen to satisfy the trade-off between increasing the baseline of the group
and having enough reliably tracked features. Adjacent key frames triplets have two
frames in common (Fig. 1).

The three key frames delimit sets of contiguous intermediate frames in the sequence.
Because the salient points were tracked also through these frames, the projection matri-
ces for each intermediate frame can be computed by camera resectioning. The projective
structure is then refined for the entire subsequence. The same process is applied inde-
pendently to the next triplet of key frames, and the two subsequences are aligned by
bringing them into the same projective basis.

After the entire available image sequence was processed and aligned, given that the
camera motion is not degenerate, the metric structure of the 3D scene is recovered by
imposing additional constraints on the internal camera parameters.

Fig. 2. Synthetic data. Two views of the typical configuration.

The role of the two initialization methods in the four computational modules will
be assessed using synthetic data. Thirty 3D points were uniformly distributed in a cube
and kept in the field of view in each of the 7 frames of size 512x512. The projected
points were corrupted by normal noise with standard deviation σ = 0.5 pixel units.
Every second frame was taken as a key frame, thus having two subsequences of five
frames each. The performance of the four modules was recorded in 100 trials. Between
the trials the measurement noise is changed, and the position of the cameras was slightly
perturbed by a random displacement. Two views of a typical experimental configuration
is shown is Fig. 2. Note the small baseline of the camera movement which increases
the difficulty of the processing. To assess the performance of an individual module, the
output of bundle adjustment from the previous module was used.

3.1 Projective Structure Recovery from the Key Frames

The first computational module of the uncalibrated image sequence analysis system re-
covers the projective structure defined by triplets of key frames. The employed geometric
constraint is based on the trifocal tensor which describes, independently of the scene
structure, the intrinsic properties of the group of three images [17].
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The incidence relation between the three point projections {x,x′,x′′} corresponding
to the same 3D point can be written using the estimated 3 × 3 × 3 trifocal tensor T as

[x′]×

(
3∑

i=1

xiT i

)
[x′′]× = 03×3 (10)

where [v]× is the skew-symmetric matrix such that v×u = [v]×u and the 3×3 matrices
T i are the correlation slices of the trifocal tensor [2]. The trifocal tensor is related to the
projection matrices of the three frames P = [I|0], P ′ = [A|e′] and P ′′ = [B|e′′] by

T i = aie
′′� − e′b�

i . (11)

The constraint is satisfied by the true values of the quantities involved. For the estimation
the relation (10) can be easily rewritten under the from (3)

Φt(m̂t)θt(β̂t) = 09 ‖θt‖ = 1 (12)

where the elements of the carrier matrix are products of the corrected image coordi-
nates m̂t = [x̂1, x̂2, x̂

′
1, x̂

′
2, x̂

′′
1 , x̂′′

2 ]� ∈ R
6 and the components of the unconstrained

parameter vector θt ∈ R
27 are the estimates of the trifocal tensor elements. Each point

correspondence contributes with 4 independent constraints [8, pp.417–421].
It can be shown that the trifocal tensor has only 18 degrees of freedom [2], and

different parametrizations can be employed to constrain the 27 values of θt to represent
a tensor [18]. We have used the 24 parameters of the projection matrices P ′ and P ′′ for
parametrization, thus βt ∈ R

24. Note that only 22 parameters are significant due to the
scale ambiguity of the projection matrices.

Since not all point correspondences are correct, the estimation process must be
implemented robustly. Instead of the traditional RANSAC approach we have used one
of its variants MLESAC [19], and minimized the transfer error, i.e., the robust sum
of squared distances between the measurements and the corrected points. Subsequent
computations were based only on the inliers. We have found that when the percentage of
erroneous matches is small (say under 20%) a global M-estimation procedure is already
satisfactory. This condition can be assured by using a high correlation score threshold.

The optimal, Gold Standard method for the recovery of the projective structure from
a triplet of the key frames, is to apply bundle adjustment over the camera parameters and
the 3D position of each feature [3], [18]. The initial solution is computed by recovering
the camera matrices from the tensor (11), and using this information to obtain the 3D
coordinates of each point by triangulation. The initial solution was computed with either
TLS using normalized image coordinates [6] or HEIV. In the latter case, the corrected
measurements m̂t are also available (8) and the camera parameters are obtained using
the estimation process (9).

The performance was assessed through the reprojection error, i.e., the root-mean-
squared (RMS) residual error which is proportional to the square root of the optimization
criterion value (1). In Fig. 3 the histograms of the reprojection errors are shown for the
different processing methods. As expected, the linear TLS solution is of poor quality
being strongly biased (Fig. 3a), though bundle adjustment succeeds to eliminate this
bias (Fig. 3b). The HEIV solution (Fig. 3c), on the other hand, already returns the same
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Fig. 3. Reprojection errors for the trifocal tensor estimation from the key frames. (a) TLS initial
solution. Note the different scale from HEIV. (b) Bundle adjustment initiated with TLS. (c) HEIV
initial solution. (d) Bundle adjustment initiated with HEIV.

estimate as the Gold Standard method, subsequent bundle adjustment is not necessary
since it will not yield any improvement (Fig. 3d). The number of bundle adjustment
iterations for the TLS initialization was on average 5.3 but with high variation (σit =
6.5) while using the HEIV initialization no additional iterations were needed. See [12]
for a detailed discussion about using HEIV method for the trifocal tensor estimation.

3.2 Insertion of the Intermediate Frames

To complete the projective structure estimation for the entire subsequence defined by
the three selected key frames, the information provided by the intermediate frames must
be also integrated. Will denote with X the projective coordinates of the 3D points,
whose image was tracked through all the intermediate frames. From the processing
of the key frames, the estimates of these 3D points are already available. Thus, using
camera resectioning [8, pp. 166–170] the initial solution for the camera matrices of the
intermediate frames can be determined.

The projective image formation relation x ∼ PX can be rewritten as
 0�

4 −x3X
� x2X

�

x3X
� 0�

4 −x1X
�

−x2X
� x1X

� 0�
4




p(1)

p(2)

p(3)


 = 03 (13)

where we denote by p(k)� the kth row of the camera matrix P . Each measurement
contributes with two linear independent equations, and thus the images of at least six
3D points must be available. From the constraint (13), for the estimation we obtain an
expression which has the form (3)

Φr (m̂r) θ̂r = 03 (14)

where the carrier matrix Φr has as elements products between the corrected projective

image and 3D coordinates, m̂r = [x̂�, X̂
�

]�, and θ̂r = vec[P̂
�

] are the elements of
the projection matrix to be estimated.
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The projection matrices are estimated for each of the intermediate frames initially
by TLS and HEIV. Note that the HEIV based estimation takes into account that the
“measurements” of the 3D points Xi (estimated in the first module) have covariances
CXi . The entire subsequence, defined by the key frames and the intermediate frames, is
passed to the bundle adjustment which refines globally the camera parameters and the
3D points coordinates.
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Fig. 4. Reprojection errors for the entire subsequence. (a) TLS initial solutions, large errors. (b)
Bundle adjustment initiated with the estimates in (a). (c) TLS initial solution. Note the different
scale from HEIV. (d) Bundle adjustment initiated with TLS. (e) HEIV initial solution. (f) Bundle
adjustment initiated with HEIV.

Results obtained with TLS initialization are presented in Figs. 4a and 4c, while the
output of the corresponding bundle adjustment is shown in Figs. 4b and 4d. A few of the
TLS initializations fail yielding RMS errors larger that 2 (Fig. 4a). Bundle adjustment
did not succeed to recover from all of these cases (Fig. 4b). The bias of the TLS initial
solution is also visible in Fig. 4c but it is removed after bundle adjustment (Fig. 4d).
The HEIV initial solution is unbiased and yields smaller errors than the TLS (Fig. 4e).
Since bundle adjustment is a global procedure, the errors are further reduced (Fig. 4f).
It should be emphasized that after bundle adjustment both initializations give the same
results (except the few failures of TLS) but fewer iterations were needed for bundle
adjustment to converge for the HEIV initialization (average 3.5 with σit = 0.8) than
using the TLS initialization (average 5.1 but with large σit = 6.1).

In the same framework we can also approach the triangulation procedure, i.e. finding
the location of the 3D projective coordinates of a point knowing its projection in several
images and the camera matrices. While it was not used in the performance comparisons
with synthetic data, triangulation is an important step in the analysis of real image
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sequences to obtain additional point correspondences and augment the available structure
[7].

For triangulation, in (13) the parameters become the 3D projective point coordinates,
and the “measurements” are the image points and camera matrices

Φg(mg)θg =
[

x1p
(3)� − x3p

(1)�

x2p
(3)� − x3p

(2)�

]
X = 02 . (15)

The HEIV estimation takes into account the nonliniarities present in the carrier matrix,
i.e., the products of image coordinates and camera matrix elements.

3.3 Alignment of the Independently Processed Subsequences

After a subsequence was processed, the newly obtained structure must be aligned with
the already recovered structure. This can be achieved since there are at least two frames
overlapping with the previous subsequence.

Assume that the frame j is shared by both subsequences and an image point xij

from this frame corresponds to the 3D point having the coordinates Xi and X ′
i in

the projective base of the two subsequences. Then the homography H that aligns the
subsequences must obey

xij ∼ P jXi ∼ P ′
jHH−1X ′

i or P j ∼ P ′
jH Xi ∼ H−1X ′

i (16)

where P j and P ′
j are the projective matrices of the frame j in the two bases.

Different methods allowing linear solutions for H , based on direct 3D point registra-
tion, which is not meaningful in a projective framework, enforcing camera consistency,
or a combination of these two were proposed [4]. We use the reprojection error between
P ′

jHXi and the corresponding image coordinates xij . From (16) this constraint is

xij ∼ P ′
jHXi (17)

which can be expressed for estimation as

Φh (m̂h) θ̂h = 02 (18)

where the elements of the carrier matrix Φh are triple products of the corrected image
coordinates, projection matrix elements and projective coordinates of the 3D points,

m̂�
h = [x̂�, vec[P̂

�
]�, X̂

�
] and θ̂h contains the 16 components of the homography

H to be estimated.
The TLS initialization started from the results of the TLS based bundle adjustment

from the previous module. Thus the few cases yielding large residual errors were also
considered. Some of these cases were successfully processed by alignment, however,
other new ones were introduced (Figs. 5a and 5b). The HEIV initialization used the
estimated covariance matrices CP̂ ′ and CX̂ of the projection matrices and 3D points.
No failures were obtained and its performance (Fig. 5e) is further refined by the global
bundle adjustment (Fig. 5f). The average number of iterations using the TLS initialization
was 6.4 with σit = 9.42 while using the HEIV initialization the average was 3.9 with
σit = 1.6.
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Fig. 5. Reprojection errors for alignment of subsequences. (a) TLS initial solutions, large errors.
(b) Bundle adjustment initiated with the estimates in (a). (c) TLS initial solution. (d) Bundle
adjustment initiated with TLS. (e) HEIV initial solution. (f) Bundle adjustment initiated with
HEIV.

3.4 Autocalibration and Metric Upgrade of the Global Reconstruction

The autocalibration method used in this paper is based on the dual absolute quadric Ω∗

and its relation to the dual image of the absolute conic ω∗
j [20]

ω∗
j ∼ KjK

�
j ∼ P jΩ

∗P �
j (19)

where Kj are the internal camera parameters for frame j. When additional knowledge
about the internal parameters is available, such as no skew, known principal point or
aspect ratio, then relation (19) can be used to obtain constraints on the dual absolute
quadric [9], [14], [15]. If we assume that the aspect ratio is one, the skew is zero and
the principal point is in the center of the image, then (19) yields four linear independent
equations

p
(1)�
j Ω∗p(1)

j = p
(2)�
j Ω∗p(2)

j

p
(i)�
j Ω∗p(k)

j = 0 (i, k) ∈ {(1, 2), (1, 3), (2, 3)} (20)

which can be rearranged for estimation as in (3)

Φa(m̂a)θ̂a = 04 (21)

where the carriers Φ have as elements double products of the projection matrix elements,

m̂a = vec[P̂
�

] ∈ R
12 and θ̂a ∈ R

10 contains the dual absolute quadric elements to be
estimated. Because of the symmetry only 10 such elements are needed.
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If one of the projection matrices is chosen as referenceP 0 = [I|03] thenΩ∗ becomes

Ω∗ =
[

K0K
�
0 −K0K

�
0 π∞

−π�
∞K0K

�
0 −π�

∞K0K
�
0 π∞

]
(22)

where π∞ defines the plane at infinity. Thus Ω∗ can be parametrized by maximum 8
parameters (3 from the plane at infinity and the rest from K0). The following transfor-
mation brings the recovered projective structure into a metric reconstruction

H =
[

K0 0
−π∞K�

0 1

]
. (23)

Following [15] the TLS initial solution was further refined by solving with Levenberg-
Marquardt the nonlinear least squares problem

∑
j

∥∥∥∥∥ KjK
�
j

‖KjK
�
j ‖F

− P jΩ
∗P �

j

‖P jΩ
∗P �

j ‖F

∥∥∥∥∥
2

F

(24)

where ‖·‖F is the Frobenius norm of a matrix. The refinement of HEIV initialization was
based on the nonlinear correction (9) which provided the estimates of the parametrization
(22).
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Fig. 6. Reprojection errors for metric upgrade of the entire structure. (a) Refined TLS initial
solutions, large errors. (b) Bundle adjustment initiated with the estimates in (a). (c) Refined TLS
initial solution. (d) Bundle adjustment initiated with refined TLS. (e) HEIV initial solution. (f)
Bundle adjustment initiated with HEIV.

The projective reconstruction is upgraded to a metric reconstruction using the homog-
raphy computed from (23) and bundle adjustment is employed over all the available 3D
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points, internal and external camera parameters. The rotation matrices were parametrized
with quaternions.

The results before and after metric bundle adjustment are presented in Fig. 6. The
HEIV based initial solution (Fig. 6e) has similar performance to the combined TLS and
nonlinear LS solution for the majority of the data (Fig. 6c) while not having the spurious
large residual errors (Fig. 6a).

4 Experimental Results with Image Sequences

The system using the HEIV initialization was run on two well known real image se-
quences. Fig. 7 shows two images from the MOVI house image sequence and two poses
of the reconstructed scene and camera positions. The sequence has 118 frames of a scene
taken by moving the objects on a turntable. Significant illumination changes appear in
the sequence because the objects were moved with respect to the light source. Note also
that the density of the frames is not uniform. The reconstruction was computed automat-
ically and without imposing constraints on the camera motion. After metric upgrade, the
cameras that were close in 3D were used to establish additional correspondences which
helped to improve the alignment of the entire sequence. It can be seen that the camera
positions are lying on a planar circular path while keeping the scene in the field of view.
The reconstructed position in 3D space of the scene features obey the rectangular shape
of the house and lay on circular surfaces for the can and cup.

Fig. 7. Metric reconstruction of the MOVI house sequence.
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Fig. 8. Metric reconstruction of the castle sequence

The second image sequence processed was the castle sequence. In Fig. 8 two im-
ages from the sequence and the reconstructed structure are shown. The sequence is 27
frames long and contains also some small nonrigid elements. The metric reconstruction
successfully recovers the main features of the scene

5 Conclusion

We have presented a detailed investigation of the importance of using a statistically
accurate initialization procedure in all the processing modules of an uncalibrated image
sequence analysis system. The reliability of the system is further increased, and the
failures for difficult data may be avoided.
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