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Abstract—To solve the general point correspondence problem in which the underlying transformation between image patches is

represented by a homography, a solution based on extensive use of first order differential techniques is proposed. We integrate in a

single robust M-estimation framework the traditional optical flow method and matching of local color distributions. These distributions

are computed with spatially oriented kernels in the 5D joint spatial/color space. The estimation process is initiated at the third level of a

Gaussian pyramid, uses only local information, and the illumination changes between the two images are also taken into account.

Subpixel matching accuracy is achieved under large projective distortions significantly exceeding the performance of any of the two

components alone. As an application, the correspondence algorithm is employed in oriented tracking of objects.

Index Terms—Correspondence problem, optical flow, color distribution matching, motion tracking, wide-baseline stereo.
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1 INTRODUCTION

FINDING corresponding features between different images
of a scene is the first module in almost any 3D computer

vision task, with the performance of the subsequentmodules
being conditioned by the accuracy of thematched features. In
this paper, we focus on point correspondences, and also
apply our technique to object tracking.

The correspondences are established by exploiting local
photometric and/or geometric characteristics in the two
images.Toaccount for the local imagedeformationsdue to the
change in the viewpoint, these deformations are approxi-
mated by a rigid transformation between corresponding
image patches. The difficulty of matching increases with the
complexity of the assumed local transformation. Three main
processing steps can be distinguished in any correspondence
algorithm: feature detection, in which salient interest point
candidates are delineated; feature matching, in which the
candidates are paired; andmatch validation, inwhich themost
probable pairs are established.

A reliable feature detection method must remain stable
under changes in the viewpoint and/or illumination. The
Harris corner detector [24] was shown to have the most
consistent performance over a large range of operating
conditions [51], and is widely used for defining salient point
features. Recently, it was generalized to tolerate affine
deformations of an image neighborhood [39]. After the
detection of the interest points, the correspondence between
them can be established using one of two strategies.

The most popular methods for feature matching are
correlation-based. Using the differential approach of optical
flow, the correlation score is expressed as a function in the
parameters of the local transformation between a reference

patch in the first image and the current patch in the second
image. An iterative maximization procedure then estimates
these parameters, e.g., [34], [52], [6], [22], [2]. The two image
patches can now be registered and, thus, implicitly their
centers are put in correspondence.

The optical flow-based registration, however, has an
important limitation. The employed optimization procedure
requires that the two image patches are already similar at the
pixel level. For example, large translations or rotationswhich
are characteristic for wide-baseline stereo are not tolerated.
Numerous techniques were proposed to alleviate this
deficiency. A hierarchical framework, either isotropic [4] or
anisotropic [65], is often used. The procedure can be also
adapted for registration of images acquired with different
sensors [27]. To assure an implicit smoothness of the flow
field, directional regularization is proposed in [2], basis
functions are used in [54], and mesh induced planar patches
are matched in [21]. The estimation procedure can be
enhanced in a robust framework formultiplemotion [5], [46].

The optical flow-basedmatching can also be supported by
using invariants. Affine invariant descriptors are built from
local information [55], [39], [33] or are based on regions [35],
[61]. In[39] iterativewhiteningof thelocalcovariancematrix is
used, the optimal size of the neighborhood being established
throughasearch inthediscretescalespace.Theinitialmatches
are based on the distance between descriptors derived from
differentiationfiltersupto fourthorder,andthesematchesare
then verified using the correlation score. The approach was
used in [48] for 3D object modeling and recognition. Local
scale-invariantfeaturesderivedfromgradientorientationand
magnitude are used in [33] also for object recognition. In [61],
affine invariant regions are delineated starting from the local
maximaof the image intensity andareboundedbyextrema in
the intensity variation. Correlation and invariant moment
descriptors are used for matching. Intensity profiles between
twopoints areused in [55] and, in [56], themethod is extended
to exploit the cyclical ordering ofmatched features in awide-
baseline stereo application. The effect of geometric transfor-
mationontemplatematchingisexplicitlytakenintoaccountin
[3] by introducing the concept of geometric blur. However, to
determine theadequate scaleof the invariantdescriptors inall
thesemethods, often an explicit search in theparameter space
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isrequired. Inadifferentapproachtowardmatching, thepoint
correspondences are established in a global process based on
tensorvotingusing the four-dimensional spaceof the induced
optical flow [45]. In [20], more complex features such as
statistical distribution of geometric properties of image
contours are used to estimate the transformation parameters.

Illumination changes between images further complicate
the matching process and several techniques have been
proposed to either derive illumination invariant features or
to model the illumination changes and solve for the model
parameters. In the context of optical flow, the dependence of
performance on illumination changes is investigated in [57]
where, also, a simple intensity mean substraction step is
proposed to increase theperformanceof a tracking algorithm.
In [23], basis images are used to determine the alignment
differenceduetoillumination,whilein[64],amethodbasedon
the localized consistency principle is described. The photo-
metric changes aremodeled in [40] and invariant features are
derived based ongeneralized colormoment invariants. In the
contextof imageretrieval,color invariantsareproposedin[19]
and, in [12], a color channel normalization step is employed to
reduce the influence of illumination changes.

The last module of a correspondence algorithm is match
validation, which sometimes is combined with the matching
step [47], [50]. The epipolar geometry induced by an image
pair, or the trifocal tensor associated with a group of three
images, provide global constraints which should be satisfied
by all the correct matches. Because of the errors in the
matching step, thegeometricparametershave tobeestimated
robustly andmethods suchasRANSAC[16],MLESAC[59]or
IMPSAC [58] are most often employed. Once a set of correct
correspondences is found, the recovered geometry can be
used to extend the number of matches under a constrained
motion model. In [47], homographies are used to extend the
matches,while in [50],matching isextendedtomultipleviews
by indexing invariant image patches and using geometric
constraints between two and three views. It is important to
emphasize that all the match validation procedures employ-
ing a robust estimator require that the absolutemajority of the
matches is already correct.

The point correspondence algorithm proposed in this
paper avoids many of the limitations of the methods
mentioned above. The emphasis is put on the five-dimen-
sionalnatureof the color image registrationproblem,which is
then approached in two complimentary ways. Beside the
traditional optical flow technique (Section 2.2), we also
introduce a method for matching the color distributions
derived from the two image patches through spatially
oriented kernels. Bothmethodsuse the sameparametrization
for theunderlyingtransformation,andtheyarecombinedinto
a single estimation process which yields a better matching
performance than each of its components (Section 2.4). By
combining the two techniques,we succeeded toovercome the
limitations of both components. Color distribution-based
matching is robust buthas relativepoor localizationaccuracy.

Optical flow-based registration, on the other hand, is very
accurate but needs close prior alignment. In our method, the
processingmoves gradually from the former to the latter. The
performance of the algorithm to find point correspondences
under severe geometric distortions and illumination changes
is illustrated with several examples in Section 3. In Section 4,
the matching algorithm is integrated into a high accuracy
oriented tracker. Issues related to the employed estimation
technique and the uncertainty of the obtained matches are
discussed in Section 5, while in Section 6, the proposed
correspondence algorithm is put in the context of computer
vision literature.

2 POINT MATCHING IN 5D

Theinformationinacolor imagecanberepresentedinthefive-
dimensional spaceof the twospatial coordinatesandthe three
components of the employed color representation (RGB, Luv,
etc.). Inthissection,afterdiscussingthemappingbetweentwo
images of a scene, two methods for establishing point
correspondences are described, each approaching the 5D
information differently. In both methods, the same parame-
trization is used for the transformation between the image
patches and, therefore, they can be combined into a single
process for estimating the parameters of the transformation.

2.1 Local Registration

Giventwocolor imagesII1 andII2 ofavisual scene,anarbitrary
pointdependent transformation exists between theirpixelsxxi

and mmj, respectively (Fig. 1). To locally approximate the
relationbetween two imagepatches II1ðxxiÞand II2ðmmjÞ,weuse
the most general linear transformation between the homo-
geneous coordinates, the planar homography. The mapping
betweenaneighborhoodcenteredonxx0 inthefirst imageanda
neighborhoodcenteredonmm0 inthesecondimageisdefinedas

mm�mm0

1

� �
/ A 00

vv> 1

� �
xx� xx0

1

� �
; ð1Þ

where / denotes projective equivalence. The projective
deformation is modeled by vv ¼ ½v0 v1�>, while A is the 2� 2
matrix of an affine transformation. The matrix A can be
further decomposed using two rotation matrices R0, R1 and
an anisotropic scaling matrix S ([23], p. 19)

A ¼ R0R
>
1 SR1: ð2Þ

The 2D rotation matrices are parametrized by the angles �0,
�1, respectively, and the scalingmatrix is S ¼ diag½sx; sy�. The
main advantage of the decomposition (2) is that it allows the
inverse mapping from the neighborhood centered on mm0 in
the second image to the neighborhood centered on xx0 in the
first image to be expressed using the same parameters
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Fig. 1. Corresponding image patches.



xx� xx0

1

� �
/ A�1 00

�vv>A�1 1

� �
mm�mm0

1

� �
; ð3Þ

where A�1 ¼ R>
1 S

�1R1R
>
0 . Thus, both transformations are

parametrized by an eight-dimensional vector ��: the spatial
coordinates m0x,m0y, and �0, �1, sx, sy, v0, v1. Note that xx0 is
known, being the center of the reference neighborhood in
the first image, while mm0, its corresponding location in the
second image, is to be determined.

In the sequel, these transformations are denoted as

II1 ! II2 mmi ¼ mmðxxi; ��Þ xxi 2 N x0 ; i ¼ 1; . . . ; nx

II2 ! II1 xxj ¼ xxðmmj; ��Þ mmj 2 Nm0
; j ¼ 1; . . . ; nm;

ð4Þ

where N uu stands for the neighborhood centered on uu. Note
that the index of a mapped pixel (in general, not on the
image lattice) is that of the grid point in the other image.

The goal is to find an estimate of �� that best approximates
the transformation between the two image patches. We will

make extensive use of the differential approach in which

starting from an initial value �̂�̂��
0
, the estimate �̂�̂�� is iteratively

refined. For alignment using the differential method, is was

shown in [1] that updating the parameter estimate (additive
approach), is equivalent to updating the image (composi-

tional approach). In theabsenceof additional information, the
initial parametervalue �̂�̂��

0
represents onlya translation, that is,

we are seeking an initial location mm0 to assure the overlap

between the corresponding image patches.

2.2 Optical Flow-Based Registration

In optical flow methods, the error is measured on the image
grid between a reference image patch and the transformed
patch from the second image. The mapping error between
the images II1 and II2 is the color difference between the
corresponding pixels

eeofðxxi; �̂�̂��Þ ¼ II2½mmðxxi; �̂�̂��Þ� � II1ðxxiÞ: ð5Þ

To obtain anupdate rule for the current parameter estimate �̂�̂��,
i.e., to compute �̂�̂��

0 ¼ �̂�̂��þ ���, the first orderTaylor expansionof
the error around �̂�̂�� is used

eeofðxxi; �̂�̂��
0Þ � II2ðmmiÞ þ J>

I2j�̂�
���� II1ðxxiÞ; ð6Þ

where J>
I2j�̂�

is the 8x3 Jacobian matrix computed in �̂�̂�� having
as elements the derivatives of each color component with
respect to each transformation parameter. See Appendix C
for the definition of the Jacobian matrix.

To estimate �̂�̂��, the error in (6) is minimized over all pixels
xxi, i ¼ 1 . . .nx in the neighborhood N x0 centered on xx0. For
a robust behavior of the estimation process, a biweight M-
estimator is employed and the contribution of a pixel is also
weighted with a spatial kernel according to its distance
from the center xx0 of the neighborhood. The procedure
becomes a generalized M-estimation method. Appendix B
provides an overview of M-estimators.

The optimization criterion thus can be expressed from (5)
and (6) as

J of ¼
Xnx

i¼1

Ke
xxi � xx0

h

� �
�

J>
I2j�̂�

���þ eeofðxxi; �̂�̂��Þ
�

�����
�����

 !
; ð7Þ

where h represents the spatial bandwidth and � the scale of
the color error, Ke is the radially symmetric Epanechnicov

kernel (A.4), and �ðuÞ is the biweight loss function (B.4). For
the multivariate case, the loss function is computed through
the norm of the argument (Appendix B). In our experiments,
h ¼ 35 pixels and � is 20 percent of the maximum range of
color difference, which is the length of the main diagonal in
the RGB color cube. The neighborhood should contain
sufficient local information and the choice of the scale �
ensures that large errors in the first order approximation do
not influence the estimate.

The optimization problem (7) is solved by iterative
weighted least squares (B.8) and it can be shown that the
parameter update equation is

b������ ¼ �
Xnx

i¼1

wiJI2j�̂�J
>
I2j�̂�

" #þ Xnx

i¼1

wiJI2j�̂�eeofðxxi; �̂�̂��Þ
" #

: ð8Þ

The least squares estimate provides a stable solution even
though it assumes a simplified noise model. See Section 5
for an in depth discussion of the related issues. The
expression of the weights wi is the product between a fixed
weight from the kernel Ke and a variable weight from the
loss function �ðuÞ (B.9)

wi ¼ Ke
xxi � xx0

h

� �
� 1� ee>ee

�2

� �2

keek � �: ð9Þ

The Jacobian in the image II2 with respect to the parameter ��
is computed by the chain rule (C.2)

JI2j�̂� ¼ Jmij�̂�JI2jmi
; ð10Þ

where JI2jmi
is the 2� 3 matrix having as columns the

gradient of each color component, and Jmij�̂� is the Jacobian
of the transformed coordinates mm with respect to the
parameter ��, computed analytically from (1). Appendix C
provides an outline of the Jacobian computation.

The three color plane gradients in the second image are
computed with 11� 11 smoothed differentiation filters. The
expressions for the separable filter sequences for a
neighborhood of size 2nþ 1 are

hsðiÞ ¼ 1
22n

2n
nþ i

� �
i ¼ �n; . . . ; n smoothing

hdðiÞ ¼ 2i
n hsðiÞ i ¼ �n; . . . ; n differentiation:

ð11Þ

These filters are built using orthogonal polynomial bases
and are optimal in the least squares sense [38].

The optical flow-based registration is well-known and is
widely used in computer vision, e.g., [34], [52]. Its main
deficiency is also well-known. To obtain an accurate
alignment between the two neighborhoods (to match their
centers), the neighborhoods must already have a significant
alignment prior to the parameter estimation. This limitation
is illustrated in Fig. 2, where a large deformation exist
between the reference image patch (Fig. 2b) and the initial
neighborhood in the second image (Fig. 2d). Using only
optical flow for registration fails to recover the transforma-
tion between these two image patches.

2.3 Matching Color Distributions

The registration method discussed in Section 2.2 does not
exploit all the information available in the color space. To use
this information, we generalize a technique proposed for
tracking in [11]. The color information of the neighborhood in
the first image will be described by the discrete color density
distribution pp
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pp ¼ puf gu2B
X
u2B

pu ¼ 1; ð12Þ

where B is a sampling of the employed color space. We
used uniform sampling with b ¼ 16 quantization steps per
color coordinate and, thus, B has 163 ¼ 4; 096 samples.

The distribution pp is derived from the data using kernel
density estimation, a technique reviewed in Appendix A.
The expression of the density for each bin is

pu ¼ Cp

Xnx

i¼1

Ke
cci � ccu

b

� �
; ð13Þ

where cci represents the color of thepixelxxi, i ¼ 1 . . .nx, and ccu
the color associated with the uth bin in B. Taking the kernel
bandwidth equal to the quantization step b means that the
pixel i contributes only to the bins within unit distance.
Again, the Epanechnikov kernel (A.4) is employed and the
normalization constant Cp is such that (12) is satisfied.

As defined above, the distribution pp is not sensitive to
rotations (up to quantization effects) which is not desirable
in applications involving alignments. To make the color
distribution dependent on the deformation of the image
patch, the contribution of each pixel’s color is weighted
with a value dependent on the pixel location. Therefore, an
additional elliptically symmetric kernel Ke� (A.5) is intro-
duced in the spatial domain and (13) becomes

pu� ¼ Cp

Xnx

i¼1

Ke�
xxi � xx0

h

� �
Ke

cci � ccu
b

� �
; ð14Þ

where h is the size of the spatial neighborhood. Four
kernels, oriented at � ¼ 0o, 45o, 90o, and 135o suffice to cover
the entire neighborhood (Fig. 3).

The local spatial structure in the second image is connected
to that in the first image through the transformation

parametrized by �� (4). Instead of deforming the neighbor-
hood in the second image, we can deform the support of the
kernel Ke� according to this transformation. Thus, the full
color information from the second image is used directly and
the image warping errors due to interpolation are avoided.
The spatial relationbetween the support of kernelKe� and the
neighborhood in the second image can now be obtained by
mappingKe� through the inverse transformation (4).

The color distribution of the pixels mmj, j ¼ 1 . . .nm, in the
neighborhood Nm0

centered on mm0 in the second image are
defined as

qu�ð��Þ ¼ Cq

Xnm

j¼1

Ke�
xxðmmj; ��Þ � xx0

h

� �
Ke

ccj � ccu
b

� �
; ð15Þ

whereCq is thenormalizationconstantsuchthat
P

u2B qu� ¼ 1.
The error between two components of the color distribu-

tion,computedwiththekerneloriented�,willbemeasuredby

ecdðu; �; ��Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qu�ð��Þ

q
� ffiffiffiffiffiffiffi

pu�
p

u 2 B ð16Þ

since, then, a least squares minimization is equivalent to
maximizing the correlation coefficient between the two
distributions

argmin
��

X
u2B

e2cdðu; �; ��Þ ¼ argmax
��

X
u2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qu�ð��Þpu�

q
: ð17Þ

Recall that
P

u2B pu� ¼
P

u2B qu�ð��Þ ¼ 1.
Similarly to optical flow-based registration, we use the

first order approximation of the error (16) around the
current estimate of the parameters �̂�̂��

ecdðu; �; �̂�̂��
0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qu�ð�̂�̂��Þ

q
þ gg>ffiffiffiffiffi

qu�
p j�̂� ����

ffiffiffiffiffiffiffi
pu�

p
; ð18Þ
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Fig. 3. Epanechnikov kernels oriented at 0o, 45o, 90o, and 135o.

Fig. 2. Alignment through optical flow. The reference neighborhood delineated in the first image (a) is shown in (b). The neighborhood delineated at
the same location in the second image (c) is shown in (d). The transformed neighborhood in the second image after two iterations, (e) and (f), and at
convergence (g) and (h). The alignment is not successful.



where gg>ffiffiffiffiffi
qu�

p j�̂� is the gradient of
ffiffiffiffiffiffiffi
qu�

p
with respect to the

parameter ��, computed in the current estimate �̂�̂��.
To obtain a robust solution for the minimization problem,

the employed loss function should take into account the
asymmetric nature of the task. Indeed, we should penalize
more the case in which the color pu� from the reference
distribution is not well represented in qu�ð��Þ, i.e.,
pu� >> qu�ð��Þ, than the opposite case when pu� << qu�ð��Þ.

The asymmetry is captured by switching the value of the

scale � depending on the sign of the error ecd (16). The

optimization criterion thus is defined as

J cd ¼
X
�

X
u2B

�cd

gg>ffiffiffiffiffi
qu�

p j�̂����þ ecdðu; �; �̂�̂��Þ

��

0@ 1A; ð19Þ

where the loss function �cd is based on the biweight (B.4)

�cd
e

��

� �
¼ �ðe=�þÞ e � 0

�ðe=��Þ e < 0

	
ð20Þ

and �þ ¼ 0:2, �� ¼ 0:4 of the maximum range of color error

(Fig. 4).
The optimization criterion (19) is again solved through

iterative weighted least squares (B.8), and the update for the

current parameter estimate �̂�̂�� is

b������ ¼ �
X
�

X
u2B

wugg ffiffiffiffiffiqu�
p j�̂�gg

>ffiffiffiffiffi
qu�

p j�̂�

" #þ
X
�

X
u2B

wugg ffiffiffiffiffiqu�
p j�̂�ecdðu; �; �̂�̂��Þ

" #
:

ð21Þ

The weights wu are derived from �cdðuÞ and are similar to
the second term in (9)

wu ¼ 1� ee>ee

�2
�

� �2

keek � �� : ð22Þ

The gradient is computed applying the chain rule (C.2) to (15)

gg ffiffiffiffiffiqu�
p j�̂� ¼

1

2

1ffiffiffiffiffiffiffi
qu�

p Cq

Xnm

j¼1

Jxjj�̂�ggKe� jxjKe
ccj � ccu

b

� �
; ð23Þ

where the gradient of the kernel Ku� , computed analyti-
cally, is

ggKe� jxj ¼ �2h�1B�1
� ðxxj � xx0Þ ð24Þ

and Jxjj�̂� is the Jacobian matrix of the inverse transform
computed analytically from (3) (see Appendix C).

To illustrate the performance of the point matching
technique introduced in this section, the example used for
the optical flow (Fig. 2) is revisited. Now, after two iterations,
the current parameter estimate transforms the spatial kernel
in the second image as shown in Fig. 5e. When the region
covered by the kernel in the second image is mapped into the
first image coordinate system (Fig. 5f), it already shows a
reasonable alignment. Recall that translations are estimated
through mm0. The estimation process converges after seven
iterations, and the result (Fig. 5h) exhibits a good alignment
(Fig. 5b). Compare with Fig. 2h where the optical flow failed
to register the two image patches. However, as it will be seen
in the next section, the location estimate is still off by about
two pixels due to the fact that the color distributions are not
very sensitive to the exact grid location.

2.4 Joint Estimation

The two point matching methods described in the previous
sections work in the same five-dimensional space. Their
strength and weaknesses are complimentary. Optical flow-
based registration emphasizes the role of the sampling grid
transformation and, therefore, can have superior localiza-
tion accuracy. To be effective, however, the estimation
process must start from a significant overlap between
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Fig. 4. The asymmetric biweight loss function �cdðuÞ.

Fig. 5. Alignment through matching color distributions. The reference neighborhood delineated in the first image (a) is shown in (b). The
neighborhood delineated at the same location in the second image (c) is shown in (d). The transformed neighborhood in the second image after two
iterations, (e) and (f), and at convergence (g) and (h). The alignment appears to be satisfactory.



corresponding pixels in the two neighborhoods. As a
consequence, optical flow-based registration does not
tolerate large transformations.

Matching based on color contributions, on the other
hand, shifts the emphasis to the “content” of the neighbor-
hoods at the price of somewhat less localization accuracy.
The transformation between the two image patches is taken
into account through continuous spatial kernels and, there-
fore, an optimization procedure can recover large transfor-
mations. The necessary condition is weaker, only an overlap
between the two neighborhoods containing significant color
information should exist. In our approach, both methods
employ the same parametrization for the underlying
transformation and, thus, they can be combined into a
single estimation process using the optimization criterion

J ¼ J cd þ J of ; ð25Þ

where the two parts were defined in (7) and (19). Since the
different kernels and loss functions introduce normaliza-
tions, there is no need to weigh the two parts in (25). The
minimization procedure remains the same.

The same example used in the two previous sections is
employed for a comparative performance evaluation of the
joint estimation procedure. Fig. 6 shows the pixelwise
difference between the aligned image patches for all three
procedures. The failure of the optical flow based registration
for significant transformations is illustrated in Fig. 6a where
the pixels have large errors. The relative low localization
accuracyofcolordistributionmatchingis illustrated inFig.6b,
where a systematic error of about two pixels is present. Only
the joint minimization has small registration errors (Fig. 6c).

Success of the minimization is contingent upon an initial
overlap between the two image patches. The standard
technique to fulfill this condition is to use a multiresolution
representation [4], [65]. First, the correspondence is estab-
lished at a low resolution and is then propagated down to
the original image. Our optimization process starts at the
third level of an isotropic Gaussian pyramid, generated
with 9� 9 smoothing filters (11).

Point Correspondence Algorithm

1. Find salient point features in the reference image
with the Harris corner detector.

2. Build three levels of a Gaussian pyramid for both
images.

3. Define a coarse uniform grid (35 pixel steps) on the
top level of the second image’s pyramid. Starting
from each grid point, run the optimization proce-
dure. Select the result yielding the smallest matching
score, i.e., the total residual error.

4. Refine the parameter estimate by propagating it
down in the hierarchy.

Note that the algorithm searches for the point correspon-
dences in the second image and it does not require putative
matches. The color distribution matching component eases
the requirements for an initial overlap between the image
patches and a much coarser grid can be used than with the
exclusively optical flow-based methods [4], [65].

2.5 Illumination Compensation

Thematching process becomesmore difficultwhen illumina-
tion changes exist between the two images.Methodsbasedon
color histograms/distribution are especially affected by the
presence of color illumination differences.

Approximative illumination invariance of imaged objects
is achieved in [12] by using color channel normalization and,
in [15], by deriving a single invariant color coordinate as a
linear combination of log RGB values. We introduce an
additional parameter in the estimation process to represent
themultiplicative coefficient of the color illumination change.
Thus, instead of using normalized color channels, the relative
luminance information is preserved at the expense of an
additional parameter to estimate.

Using the illumination compensation parameter �, the
optical flow error (5) becomes

eeofðxxi; ��; �Þ ¼ �II2½mmðxxi; ��Þ� � II1ðxxiÞ; ð26Þ

while the color distribution error (16) is for a given kernel
orientation �

ecdðu; �; ��; �Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qu�ð��; �Þ

q
� ffiffiffiffiffiffiffi

pu�
p

; ð27Þ

where

qu�ð��; �Þ ¼ Cq

Xnm

j¼1

Ke�
xxðmmj; ��Þ � xx0

h

� �
Ke

�ccj � ccu
b

� �
: ð28Þ

The estimation procedure remains the same, just extended
with the additional parameter �.

The advantage of introducing the illumination compensa-
tion parameter is illustrated in Fig. 7. Three interest points
with their neighborhoods are shown in Fig. 7a. The
corresponding points in the second image found without
using the illumination compensation are shown inFig. 7b and
by using the illumination compensation in Fig. 7c. Their
neighborhoods aredeformedaccording to the estimated local
transformation. By mapping the image patches from the first
image into the second image, the alignment errors are shown
in Figs. 7d and7e, respectively. Clearly, byusing illumination
compensation (Fig. 7e), the alignment is better and the three
points are correctly matched. A second example (Fig. 8)
shows the three neighborhoods in the first image (Fig. 8a) and
their mapping into the second image without (Fig. 8b) and
with (Fig. 8c) illumination compensation. Note the incorrect
alignment inFig. 8b.The twoexamples showthat themapped
neighborhoods have similar intensity in the second image,
proving the effectiveness of illumination compensation
through a multiplicative factor.

3 PERFORMANCE EVALUATION

To test the performance of the point matching algorithm
under controlled conditions, an 820� 632 image was
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Fig. 6. Performance comparison between different alignment strategies.
Registration error, shown as pixelwise image difference, based on
(a) optical flow only, (b) color distribution only, and (c) joint estimation.



deformed with known homographies introducing an in-
creasing amount of distortion. After the transformation the
image was resampled with the original grid (Fig. 9a).

Correspondences for 121 salient points from the original
image were sought. Since ground truth was available, the
rate of detection (Fig. 9b) and the localization accuracy (Fig. 9c)
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Fig. 7. Illumination compensation experiment. (a) The reference image and the neighborhoods of three interest points. The transformed
neighborhood in the second image found without (b) and with (c) illumination compensation. Mapping of the three reference neighborhoods into the
second image without (d) and with (e) illumination compensation.

Fig. 8. Illumination compensation experiment, Valbonne. (a) The reference image and the neighborhoods of three interest points. The mapped
neighborhoods into the second image without (b) and with (c) illumination compensation.



were measured in the third image (Fig. 9a top-right). The
detection rate was defined as a “hit” in the second image
within 5 pixels of the ground truth. Three different
experimental conditions were investigated:

1. only optical flow-based registration,
2. only color distribution matching, and
3. combined method.

The results clearly reveal the advantage of the joint
approach. While the detection rate of the color distribution
matching and the combined method are not distinguishable,
they exhibit very different localization accuracy. The
matches found by the former can have up to a seven pixel
distance from the ground truth. The combined method
locates all the correspondences within one pixel distance
(Fig. 9c). The color distribution matching succeeds to bring

the two neighborhoods close enough that the optical flow can

become effective. Once the neighborhoods have a significant

overlap, the color distribution score does not vary too much.

The optical flow alone cannot cope with the large distortions

in the images and fails to locate about half of the

correspondences. Sequential application of the two compo-

nents, color distribution-based matching followed by optical

flow, is not optimal since as can be seen in Fig. 9c; the former

may not bring the two image patches close enough that the

latter is guaranteed to succeed.
In the subsequent experiments, the combined method

was applied to several images also used in [39]. The results
are shown in Fig. 10. In each case, salient points were
detected in the first image (top), and their correspondences
were located by the algorithm in the second image (bottom).

GEORGESCU AND MEER: POINT MATCHING UNDER LARGE IMAGE DEFORMATIONS AND ILLUMINATION CHANGES 681

Fig. 9. Quantitative assessment of the matching performance. (a) Test images. The image at the top left was distorted by four known homographies.
(b) The detection rate and (c) the localization accuracy are computed for the top-right image in (a).



The neighborhoods associated with three points (marked by
arrows) are shown on the right.

All images were 800� 600 and significant scale, rotation
and projective distortions are present. To measure the
quality of the point matches, a global homography between
the two images was robustly computed based only on the
correspondences with a better than median matching score.
All the established matches were then classified as inliers or
outliers relative to this homography with the value of the
decision threshold being 5 pixels.

InFig.10a,outof128featurepoints fromthefirst image,114
were declared as correctly matched in the second image. In
Fig. 10b, the threshold of the Harris corner detector was
lowered and out of 416 feature points, 308 were correctly
matched. For the images in Figs. 10c and 10d, the correct

detection rates were 81 out of 146 and 109 out of 137,
respectively.

We can conclude that in spite of large deformations
between the two images, there are enough correct corre-
spondences that a robust global estimation technique, such
as RANSAC [16] or MLESAC [59], can reliably recover
3D information. This can be exploited in wide-baseline
stereo applications, e.g., [47], [50].

4 ORIENTED TRACKING OF OBJECTS

The point matching algorithm described in this paper can
be applied to tracking moving objects in an image sequence.
Motion analysis, methods, the underlying models, and the
supporting assumptions are reviewed in [41]. Our approach
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Fig. 10. Four matching experiments. The interest points shown in the top image were matched in the bottom image. The neighborhoods of three

points (marked with arrows) are enlarged to show the estimated local transformation.



combines the standard differential tracker [52] with the
mean shift-based tracker [11]. Three improvements relative
to the tracking method presented in [11] are obtained: the
relative orientation of the object in each frame is also
determined; the localization accuracy is much higher and
the scale parameter is now automatically estimated from
the data instead of being updated through explicit search.
By the nature of the tracking task, once the target is defined,
in the next frame, a reliable initial value for �� is usually
available, therefore, the point correspondence algorithm is
implemented only at the resolution of the input. Since, once
a point correspondence is established the neighborhood of
interest is also localized, tracking is automatically achieved.

In Fig. 11, four frames of a 319 frame image sequence
captured by a hand held camera are shown. The camera
movement included large 3D rotations and translations. The
initial neighborhood of the target region was selected
manually (Fig.11a).Thetargetmodel iscontinuouslyupdated

as in [11]. In spite of the large variations in the appearance of
thetarget, theobjectof interestwassuccessfully trackedacross
the entire sequence (Figs. 11b to 11d). Another example is
illustrated in Fig. 12 in four frames froma 472 frame sequence
which shows the oriented tracking of a person. Because of the
nonrigid transformations, only the color distribution with an
affine motion model was used. The person was successfully
tracked in spite of the large variations in appearance.

5 ESTIMATION METHODS AND COVARIANCES

Parameter estimation using the least squares method
assumes that only the values of the color vectors are
affected by noise. That is, the noise does not affect the
spatial gradient but only the temporal derivative. However,
this is not true as it has been repeatedly discussed in the
optical flow context in [42], [43], [8] and [28, p. 369]. Because
of finite difference approximation of the gradient, the noise

GEORGESCU AND MEER: POINT MATCHING UNDER LARGE IMAGE DEFORMATIONS AND ILLUMINATION CHANGES 683

Fig. 11. Oriented tracking of a rigid object. (a) Initial frame. (b) Frame 73. (c) Frame 180. (d) Frame 259. (All trademarks remain the property of their
respective owners. All trademarks and registered trademarks are used strictly for educational and scholarly purposes and without intent to infringe on
the mark owners.)

Fig. 12. Oriented tracking of a person. (a) Initial frame. (b) Frame 74. (c) Frame 253. (d) Frame 417.



corrupting the spatial gradient is point dependent [8].
Using least squares in the presence of point dependent
noise yields biased estimates. It has also been argued that
the bias of the optical flow estimate is related to human
visual perception [14]. Due to the bias, the velocity
estimates tend to be smaller in length and closer to the
dominant gradient direction in the considered image patch.

Beside the traditional least squares, other techniques
based on the errors-in-variables (EIV) model can also be
used. For point dependent (heteroscedastic) noise, several
general techniques have been proposed such as the HEIV
method [36], the renormalization method [28] and the FNS
method [10]. For estimation in the context of optical flow, see
[8], [42], [43].

To illustrate the difference between the estimation
techniques, using the notations from Appendix B, we
rewrite the linear constraint zi ¼ yy>i ��, i ¼ 1 . . .n as bb>i !! ¼ 0,
bbi ¼ ½yyi �zi�>, !! ¼ ½�� 1�>. The criterion to be minimized in
the presence of heteroscedastic noise is

J HEIV ¼
Xn
i¼1

ðbb>i !!Þ
2

!!>Cbi!!
; ð29Þ

where Cbi is the point dependent covariance matrix. The
parameter estimate is obtained by iteratively solving a
generalized eigenproblem [28], [36].

Without considering the point dependent noise process,
i.e., all Cbi ¼ I, the total least squares (TLS) estimator is
obtained.

J TLS ¼
Xn
i¼1

bb>i !!

k!!k

� �2

ð30Þ

having the solution the eigenvector corresponding to the
smallest eigenvalueof themomentmatrixB ¼

Pn
i¼1 bbibb

>
i . TLS

minimizes the sum of orthogonal distances from the data/
measurements to the hyperplane having the normal !!. By
using a simplified noise process, the TLS estimate is biased
[8]. For optical flow computation, it has been also observed
that the TLS estimate has larger variability than LS [43], [60],
and alternative solutions have been proposed such as
constrained TLS (CTLS) [60] at the expense of higher
computational cost.We have used the least squares approach
in this paper since the bias is not significant enough to corrupt
the matching, as our experimental results have shown. Least
squares is also faster and is the most stable approach (due to
the presence of the small bias). Our algorithm, however, can
be easily adapted to use theHEIVmethod either for the entire
estimation process or only as a postprocessing step.

Feature detection and matching is only a preprocessing
module in many geometric computation algorithms. In
subsequentprocessing it is oftenof interest touse information
about the location uncertainty of the matched points. The
most straightforward method is to compute the covariance
matrix of the point features directly from the image either
through a residual-based approach or a derivative-based
approach [44], [30]. In the residual approach, a quadratic
function is fitted to the sum-of-squared-distances (SSD)
correlation surface and the Hessian yields the inverse of the
normalized covariance matrix. In the derivative approach,
the first order approximation of the Hessian is given by the
weighted sum of the image gradients with respect to each of
the coordinates.

In our approach, the uncertainty of the parameter
estimate is a byproduct of the optimization algorithm. For
the least squares technique, the covariance matrix of the
parameters ĈC� is

ĈC� ¼ �2
Xn
i¼1

ŷyyyiŷyyy
>
i �2 ¼

Pn
i¼1 ðzi � ŷyyy>i ��Þ

2

n� r
; ð31Þ

where r is the rank of the problem and ŷyyyi are the corrected
measurements.

Several studies investigated the influence of the derived
point location uncertainty in the subsequent geometric
computation algorithms [30], [9]. To see the difference
between the covariance matrices obtained with our method
and the ones obtained directly from the image gray levels, we
used both of them for estimating the epipolar geometry with
the unbiased HEIV estimator which takes into account the
different covariances associated with each data point. For
details about this estimator, see [37].

Sixteen points were selected in the first image (Fig. 13a)
and matched in the second (Fig. 13b). For the second image,
the estimated covariancematrices using the gray levels of the
color image converted to gray scale are shown in Fig. 13c and
using ourmethod in Fig. 13d. There is a scale ambiguity of the
gray scale computed covariances, however, a common global
scale does not influence the fundamental matrix estimate.
Thus, it suffices to compare only the shapes of the covariance
matrices. It canbeobserved that the shapesaredifferentwhen
computed with the two methods.

The fundamental matrix was then computed with both
sets of covariance matrices using the HEIV method while
imposing the ancillary constraints [36] (p. 130). To obtain the
“ground truth” estimateF0, theHEIVmethodwas applied to
35 points carefully selected manually. The difference in
Frobenius norm between the estimated fundamental ma-
trices and the “ground truth” is small but slightly largerwhen
gray scale based covariance matrices are used

kFmatch � F0k ¼ 0:0009960 and

kFgray � F0k ¼ 0:0013766:
ð32Þ

Since the location estimates in the second image have high
accuracy, very good estimates are obtained for the funda-
mental matrix in both cases. While it was reported in [30]
that the gain of using feature point covariance matrices in
estimation is small, one must be aware that these
covariances depend on the way they were derived.

6 DISCUSSION

The point correspondence algorithm described in this paper
is general andversatile enough tobeuseful inmanycomputer
vision applications. It combines two different approaches,
optical flow registration and color distributionmatching, in a
unified robust estimation framework. The sensitivity of color
distributions to the image transformation was increased by
the use of oriented elliptical spatial kernels. Illumination
changes are taken into account by explicit parametrization of
the intensity shift and solving for this parameter in the same
estimation procedure.

The proposed algorithm has superior performance, with
excellent detection rate and localization accuracy for both
synthetic data and real image pairs with large transforma-
tion between them. The same procedure was applied to
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tracking rigid and nonrigid objects in long image sequences
while also recovering the relative orientation of the object.

The advantage of optical flowmethodology is that of high
localization accuracy, especially if the image deformation fits
the transformation model, but it fails for large or nonrigid
deformations.On the other hand, color distributionmatching
does not have high localization accuracy, but ismore tolerant
to large or nonrigid deformations. Combining the two
through a robust framework benefits from the advantages
of both methods. The procedure is flexible enough to permit
activation/deactivation of the model parameters according
to the desired behavior and one can use only the distribution
matching as shown in the tracking application.

The performance evaluation examples in Fig. 10 were also
used in [39]. The point correspondence algorithm employed
there, however, is different from ours. The size of the
neighborhood and its location are determined by a search in
the discretized space of the parameters and affine invariant
features are used formatching.We also failed to process [39],
Fig. 6b, and our failure could be traced to the lack of enough
consistent gray level variations in the neighborhoods of the
interest points.

In case of very large scale changes between the two
images, our method may not perform satisfactorily since the
estimation process can try to compensate for the scale
change by introducing a “false” projective transformation.
For such scale changes, we recommend to run the algorithm
with the initial scale set to a few representative values, and
select the best result based on the matching score. Note that
the correct scale will be also determined.

The proposed method works using local information
independently, therefore, a possible further enhancement is
to integrate the algorithm into a match validation procedure
exploiting global constraints. The geometry of the projective

camera provides several such constraints which can be used

to restrict the motion model. Problems that arise from the

presence of repetitive structures can be also avoided by

global processing [62].
Our technique can be extended to other image features

such as edges or filter responses along the approach

proposed in [20]. Other enhancements include the use of

the value of the optimization criterion (residual error) to

monitor the quality of the matches [18], [29]. In a more

general context, self consistency [31] can be employed to

assess the adequacy of the proposed correspondence algo-

rithm for a given computer vision task.
We have shown that combining optical flow and

local distribution matching significantly improves the

performance of a fundamental module in computer

vision: point matching. The increase in the reliability

of this module can help to build more autonomous

computer vision systems. The C++ source code of the

point correspondence algorithm described in the paper

is available at www.caip.rutgers.edu/riul.

APPENDIX A

KERNEL DENSITY ESTIMATION

This Appendix reviews kernel density (Parzen window)

estimation employed in the computation of color distribu-

tions. For a more in-depth analysis of this topic, see [13],

[17], [53], [63].
Given n points xxi, i ¼ 1 . . .n in a d-dimensional space

xxi 2 IRd, the multivariate kernel density estimate p̂pðxxÞ
obtained with the kernel KðxxÞ and a symmetric positive

definite bandwidth matrix H is computed at the point xx as
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Fig. 13. Covariance computation experiment. The points marked in (a) were matched in (b). The shape of the covariance matrices obtained using the
gray levels is shown in (c) and obtained from the point correspondence algorithm in (d).



p̂pðxxÞ ¼ 1

n

Xn
i¼1

KHðxx� xxiÞ; ðA:1Þ

where

KH ¼ jHj�1=2KðH�1=2xxÞ: ðA:2Þ

For the estimate p̂pðxxÞ to be a proper probability density
function, i.e., to be nonnegative and integrate to one, the
d-variate kernel KðxxÞ must satisfy the conditions

KðxxÞ � 0

Z
IRd

KðxxÞdxx ¼ 1: ðA:3Þ

The accuracy of the density estimate is measured by the
mean integrated squared error (MSIE), that is, the expected
value of the squared error between the density estimate p̂p and
the true value p, integrated over the domain of definition. In
practice, however, only an asymptotic approximation of this
error measure can be computed (AMISE). Under this
asymptotics, as the number of points n increase toward
infinity, the elements of the full rank bandwidth matrix H
should go toward zero at a rate slower than n�1. For radially
symmetric kernels, the AMISE criterion is minimized by the
Epanechnikov kernel having the expression

KeðxxÞ ¼ Ce 1� xx>xxð Þ xx>xx � 1
0 otherwise;

	
ðA:4Þ

where Ce is the normalization constant such that (A.4) is
satisfied.

If the bandwidth matrix H is chosen proportional to the
identity matrix H ¼ h2Id, then the kernel density estimate
using the Epanechnikov radially symmetric kernel Ke has
the expression

p̂pðxxÞ ¼ 1

nhd

Xn
i¼1

Ke
xx� xxi

h

� �
: ðA:5Þ

The value of the bandwidth h has to be provided and
influences the degree of smoothing of the density estimate.

Selecting in two dimensions the bandwidth matrix as
H ¼ h2B�, where

B� ¼ R�diagð�2
1; �

2
2ÞR>

�

¼
cos� �sin�

sin� cos�

� �
�2
1 0

0 �2
2

" #
cos� sin�

�sin� cos�

� � ðA:6Þ

is equivalent to employing a two-dimensional Epanechni-
kov elliptically symmetric kernel oriented at angle �

Ke�ðxxÞ ¼ CB 1� xx>B�1
� xx

� �
xx>B�1

� xx � 1

0 otherwise

(
ðA:7Þ

and the density estimate becomes

p̂pðxxÞ ¼ 1

nh2�1�2

Xn
i¼1

Ke�
xx� xxi

h

� �
: ðA:8Þ

APPENDIX B

M-ESTIMATION

This Appendix reviews the family of robust estimators
known as M-estimators [32], [26]. In traditional regression, a

set of n data points yyio in IRd are characterized by a single
parameter vector �� through a linear relation to the true
value of the measurements zio

zio ¼ yy>io��: ðB:1Þ

Considering that zi ¼ zio þ �zi is measured with error, the
parameter vector �� is found by through minimization of the
error defined with a loss function �ðuÞ

�̂�̂�� ¼ argmin
��

Xn
i¼1

�
yy>io��� zi

�

� �
¼ argmin

��
J ð��Þ; ðB:2Þ

where � is the scale which controls the magnitude of the
error mapped through the loss function. The loss function
�ðuÞ should satisfy the following conditions

�ðuÞ � 0 �ð0Þ ¼ 0 �ðuÞ ¼ �ð�uÞ nondecreasing with juj
ðB:3Þ

and should have piecewise continuous first two derivatives.
Note that we can interpret the M-estimators as a general-
ization of the least squares estimators. By taking the loss
function to be �ðuÞ ¼ u2, the minimization (B.2) defaults
into the well-known least squares criterion where the scale
parameter � does not influence the estimate.

The M-estimators having a loss function with bounded
increase are called redescending M-estimators. In this class,
wewill use the biweight redescending loss function defined as

�ðuÞ ¼
1
6 1� ð1� u2Þ3
h i

juj � 1
1
6 juj > 1:

(
ðB:4Þ

The parameter estimate �̂�̂�� is the solution of the equation

r�J ð�̂�̂��Þ ¼
Xn
i¼1

@�ðuiÞ
@u

@uið�̂�̂��Þ
@��

¼ 00; ðB:5Þ

where ui ¼ ðyy>io��� ziÞ=�. By defining the data dependent
weights as

wi ¼ wðuiÞ ¼
1

ui

@�ðuiÞ
@u

ðB:6Þ

and computing the second factor in (B.5), we obtain

Xn
i¼1

wiyyioðyy>io�̂�̂��� ziÞ ¼ 00: ðB:7Þ

This normal equation has theweighted least squares solution

�̂�̂�� ¼
Xn
i¼1

wiyyioyy
>
io

 !þ Xn
i¼1

wiyyiozi

 !
; ðB:8Þ

where “þ” represents the pseudoinverse operator. For the
biweight loss function the expression of the weights derived
from (B.4) is

wðuÞ ¼ ð1� u2Þ2 juj � 1
0 juj > 1

	
; ðB:9Þ

i.e., a redescending loss function completely removes the
influence of measurements that yield large errors. Solving
for the parameters estimate �̂�̂�� is done iteratively. Starting
from an initial value �̂�̂��

0
, the weights are derived from the

error and the estimate is updated using (B.8). For the
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multivariate case, the argument of the loss function is
passed through its norm �ðkuukÞ.

An extension of the classical M-estimation procedure is
to generalize the weights such that the influence of outliers
in the y-space is bounded. These are measurements with
large yyi relative to the majority of the data points, but can
have zi values similar to them. In the generalized M-
estimation procedure, the weights are not a direct function
of the error, but instead are defined as wi ¼ wðzi; yyio; ��; �Þ
[32]. The conditions on the function w (nonnegative,
bounded and continuous) assure that the influence of
outliers in the y-space is reduced. The simplest way is to
decompose this function as a product between a weight
defined on the residual error and a weight defined on yy [49]
(p. 13), and this is the approach adopted in the paper.

APPENDIX C

JACOBIAN COMPUTATION

Following [7], the Jacobian matrix for a vector value function
ffðxxÞ 2 IRn in the variable xx 2 IRm is them� nmatrix

Jf jx¼
4 @ffðxxÞ>

@xx
¼

@f1
@x1

. . . @fn
@x1

..

. . .
. ..

.

@f1
@xm

. . . @fn
@xm

2664
3775 ¼ @ffðxxÞ

@xx>

� �>
: ðC:1Þ

For a scalar value function fðxxÞ, the Jacobian becomes the
gradient with respect to xx, Jfjx ¼ ggf . The chain rule is used
to compute the Jacobian of the composite function
ffðxxðyyÞÞ; yy 2 IRs, that is

Jfjy ¼ JxjyJfjx: ðC:2Þ

As an example, we will derive some of the elements of the
Jacobian matrix of the transformation defined by (1). The
equivalent relation between the point coordinates xx andmm is

mm ¼ Aðxx� xx0Þ
vv>ðxx� xx0Þ þ 1

þmm0: ðC:3Þ

Thus, the derivative with respect to the angle �0 parame-

trizing the rotation matrix R0 is

@mm

@�0
¼ �sin�0 �cos�0

cos�0 �sin�0

� �
R>

1 SR1
ðxx� xx0Þ

vv>ðxx� xx0Þ þ 1
ðC:4Þ

and the derivative with respect to the projective parameters
vv> is

@mm

@vv>
¼ � Aðxx� xx0Þ

½vv>ðxx� xx0Þ þ 1�2
ðxx� xx0Þ>: ðC:5Þ

The remaining values, as well as the Jacobian of the inverse
transform, are derived the same way.
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