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Abstract

Recent advances in networking, robotics, and computer technology allow today real-
time diagnosis, consultation, and education by using images obtained through remote mi-
croscopy. This paper presents a new approach in telepathology, the Image Guided Decision
Support (IGDS) system, which integrates components for both remote microscope control
and decision support. Using the Micro-Controller component the physician can command a
robotic microscope from the distance, obtain high-quality images to be used in the diagnosis,
and authorize other users to visualize the same images. The image understanding-based
Decision Support component of the system locates, retrieves and displays cases which ex-
hibit morphological profiles consistent to the case in question and suggests the most likely
diagnosis based on majority logic. The IGDS system has a natural man-machine interface
containing engines for speech recognition and voice feedback.

1. Introduction

The subtle visual differences exhibited by some malignant lymphomas and chronic lym-
phocytic leukemia give rise in practice to a significant number of false negatives (malig-
nant cells classified as normal). If suspicious cells are detected, subsequent morphological
evaluation of specimens by even experienced pathologists is often inconclusive. In these
cases differential diagnosis can only be made after expensive supporting tests such as im-
munophenotyping by flow cytometry.

This paper describes a new approach in telepathology, the Image Guided Decision Sup-
port (IGDS) system, designed to assist pathologists to discriminate among malignant lym-
phomas and chronic lymphocytic leukemia directly from microscopic specimens. Since
some parts of the system have been presented in [4], we will concentrate here on recent
results. Currently, the system integrates components for remote microscope control, mul-
tiuser visualization, and decision support, all having a platform-independent implementa-
tion in Java.

The paper is organized as follows. Section 2 presents the Multiuser Micro-Controller
component of the system. In Section 3 the Decision Support component is discussed.
Experimental results and comparison to human expert performance on the same database
are shown in Section 4.



2. Multiuser Micro-Controller

This component of the system allows one primary user and multiple secondary users
to connect to the image server located at the microscope site. The primary user can
control the remote microscope (AX70 Olympus equipped with motorized stage), receive
and visualize diagnostic-quality images of tissue samples. In the same time, the transfered
images are seen by the secondary users. Thus, the IGDS system provides support for
consultation, when a fellow pathologist is logged in as secondary user, or teaching, when
a group of students is connected to the image server.

A display capture of the Micro-Controller is shown in Figure 1. The bottom-left image
is obtained during the initialization and represents the low resolution panoramic view of
the specimen on the robotic stage. The center-right image is the current view using a lens
of 100X and corresponds to the small rectangular region marked on the panoramic image.
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Figure 1. The Micro-Controller component.

The primary user can adjust the light path or focus of the microscope, change the
objective lens, move the specimen on the robotic stage, or copy the current image to the
Decision Support part for further analysis. These actions are possible by graphical input
or by speech. A fusion agent capable of multimodal inputs interprets the commands, calls
the appropriate method, and gives voice feedback. Examples of voice commands are: Set
Light ##, Set Focus ##, Change #, Transfer, Move Right (Left, Up, Down), Update the
System.

3. Decision Support

The task of this component is to locate, retrieve and display cases with morphological
profiles consistent to the case in question, and to suggest during each retrieval the most
likely diagnosis based on majority logic. It has a client-server architecture (Figure 2). The
Client part is intended to be used in small hospitals and laboratories to access through the
Internet the database at the Server site.

Two versions of the Client were implemented: a Java application and an applet. The
application allows natural communication with the system based on speech recognition
and voice feedback, while the applet runs in a Web browser.
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Figure 2. Architecture of the Decision Support component.

3.1. Query analysis

A typical IGDS retrieval session starts by loading the query image and selecting a
rectangular region which contains the cell of interest. The reliability of the color segmenter
[5] integrated into the system makes possible unsupervised on-line analysis of the selection
and extraction of the nucleus features: shape, area, texture, and color. Medical literature
uses frequently the first three of the above attributes to morphologically describe the
appearance of malignant cells [1].

We characterize the nuclear shape through similarity invariant Fourier descriptors [8].
Fourier invariants were recently proved to be superior to methods based on autoregres-
sive models [7]. The uncertainty introduced by the segmentation process is taken into
account to determine the number of harmonics which reliably represent the shape. Since
all the digitized specimens in the database have the same magnification, the nuclear area
is computed from the chain-coded contour.

The texture analysis is based on a multiresolution simultaneous autoregressive model
(MRSAR) [9]. This is a second-order noncausal model characterized by five parameters at
each resolution level (5x 5, 7x 7, and 9 x 9 neighborhoods). To estimate the model param-
eters 21 x 21 overlapping windows moving every two pixels in both horizontal and vertical
directions are used and for each window a multiresolution feature vector is obtained. The
mean vector and the covariance matrix over all windows inside a given cell nucleus are the
MRSAR features associated with that nucleus. Thus, the texture dissimilarity has to be
measured by the distance between two multivariate distributions with known mean vectors
and covariance matrices. We use the Mahalanobis distance between the MRSAR feature
vectors to express this dissimilarity.

However, our own research [6] showed that the retrieval performance can be improved
by using the Bhattacharyya distance as a dissimilarity measure. In addition, efficient
computation of this distance is possible by taking into account that most of the energy
in the feature space is often restricted to a low dimensional subspace. The improved
representation will be incorporated into the IGDS system.



3.2. Retrieval

The retrieval process is multithreaded, simultaneous accesses to the database being
authorized. During feature matching the query data and the logical information in the
database are compared to derive a ranking of the retrievals.

The overall dissimilarity metric between two nuclei is defined as a linear combination of
the normalized distances corresponding to each visual attribute. The weights are obtained
off-line by optimizing the probability of correct classification over the entire database. We
found this metric to provide better results than the joint rank criterion expressed as the
weighted sum of individual ranks.

3.3. User interface

A display capture of the Decision Support applet running in a Web browser is shown in
Figure 3. The query image mclf0-19 with the region of interest is top-left, the delineated
nucleus of the cell and the normalized shape of the nucleus recovered from 40 Fourier
invariants are top-middle, and the first four retrieved images are at the bottom. Actions
such as selecting different query attributes, browsing the retrievals, selecting a different
scale for visualization, and displaying specific clinical data and video clips are possible.

For the Java application, typical voice commands are: Show Microscope, Open Image
#+4, Segment the Image, Search the Database, Show Video, Clinical Data #. Examples
of voice feedback are: Image ## Opened, Segmentation Completed, Analyzing Texture,
Database Search Completed, Suggested Class: CLL (FCC, MCL, NORMAL).
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Figure 3. The Decision Support applet of the IGDS system.

4. Performance Evaluation

The system performance was quantitatively evaluated and compared to the human ex-
pert results. The reason of this comparison however is only to assess the usefulness of the



Table 1. Confusion Matrix: IGDS System

\ | CLL | FCC | MCL | NRML | NO DEC |
CLL | .8389 | .0200 | .0711 | .0700 | .0000
FCC | .0250 | .9000 | .0000 | .0500 | .0250
MCL || .1357 | .0143 [ .8333 | .0000 | .0167
NRML | .1333 | .1200 | .0000 | .7300 | .0167

system. In a real analysis scenario, a lot of context information difficult to quantize is
taken into account for the diagnosis and no technique can ever replace the pathologist and
light microscopy. Our system is designed as a tool to help the physician during its own
analysis and not as an automatic cell classifier.

4.1. Database

The ground truth of the cases recorded in the database is obtained a priori through
immunophenotyping. Currently, the image server uses a database of 261 color 640 x
480 images, containing cells which belong to 3 classes of lymphoproliferative disorders
(98 Chronic Lymphocytic Leukemia - CLL, 38 Follicular Center Cell Lymphoma - FCC,
66 Mantle Cell Lymphoma - MCL) and a class of healthy leukocytes (59 NORMAL).
The database indexing is performed off-line, the incoming cases being first analyzed and
registered. Then, the weights of the dissimilarity measure are re-learned to account for the
new entries in the database.

4.2. Experiments

The confusion matrix of the system, shown in Table 1, was obtained through ten-fold
cross-validated classification to provide a more realistic estimate. The confusion matrices
representing the results of three human experts classifying 242 digitized specimens from
the same database were also obtained. The experts were shown one digitized specimen
at a time on a high resolution screen with no other distractor displayed. The different
confusion matrices are shown in Table 2.

Examining Table 1 and Table 2 we observe that the human expert performance is similar
to that of the system for the FCC and NORMAL cases, but it is worse for the CLL and
MCL cases, both in terms of probabilities of correct decision (the marked diagonals) and
probabilities of false negatives (the NRML column). The correlation between the human
and machine results is also noteworthy. The classification of the FCC cells proved to be
the easiest task while the CLL and MCL cells resulted in similar levels of difficulty.

In a real classification scenario however, the human expert uses a lot of context informa-
tion including both patient data and additional data inferred from the digitized specimens.
We therefore stress the decision support function of the IGDS system. The system is not
intended to provide automatic identification of the disorder, but to assist the pathologist to
improve its own analysis. The pathologist combines the objective classification suggested
by the system with the context information to obtain a robust diagnostic decision.

At present, the system is being evaluated in real retrieval scenarios at the Department
of Pathology, UMDNJ-RWJ Medical School. An important goal of this research is the
establishment of new guidelines for visually characterizing lymphoproliferative disorders.
Other query attributes are being investigated such as the ratio of the nuclear area over the
cytoplasm area of the cell.



Table 2. Confusion Matrix: Human Experts

\ | CLL | FCC | MCL | NRML | NO DEC |
CLL | .5647 [ .0352 | .2117 | .1764 | .0117
FCC | .0285 | .9428 | .0000 | .0285 | .0000
MCL || .1538 | .0769 | .5538 | .1692 | .0461
NRML | .1228 | .0000 | .1053 | .7543 | .0175

\ | CLL | FCC | MCL | NRML | NO DEC |
CLL [ .4000 | .0588 | .1647 | .3765 | .0000
FCC | .0000 | 1.000 | .0000 | .0000 | .0000
MCL || .0769 | .0923 [ .5538 | .1692 | .0923
NRML | .0000 | .0877 | .1053 | .7719 | .0351

\ | CLL | FCC | MCL | NRML | NO DEC |
CLL [ .4941 ] .0235 | .2118 | .2000 | .0471
FCC | .0000 | .8857 | .0857 | .0286 | .0000
MCL || .4308 | .0154 [.3077 | .0308 | .2154
NRML | .2000 | .0364 | .1455 | .3455 | .2727
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