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AbstractÐComputing the weighted average of the pixel values in a window is a basic module in many computer vision operators. The

process is reformulated in a linear vector space and the role of the different subspaces is emphasized. Within this framework well-

known artifacts of the gradient-based edge detectors, such as large spurious responses can be explained quantitatively. It is also

shown, that template matching with a template derived from the input data is meaningful since it provides an independent measure of

confidence in the presence of the employed edge model. The widely used three-step edge detection procedure: gradient estimation,

nonmaxima suppression, hysteresis thresholding; is generalized to include the information provided by the confidence measure. The

additional amount of computation is minimal and experiments with several standard test images show the ability of the new procedure

to detect weak edges.

Index TermsÐEdge detection, performance assessment, gradient estimation, window operators.
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1 INTRODUCTION

EDGE detection is arguably the most important operation
in low-level computer vision with a plethora of

techniques, belonging to several distinct paradigms, having
been published. See, for example, [4] for an extensive
review of older methods and [2], [13] for the current state-
of-the-art. The optimality of an edge detector, however, can
only be assessed in the context of a well-defined task [29].
That is, the quality of the edge map is directly related to the
amount of supportive information it carries into the
subsequent processing stages. Since this information is
extracted after the edge map was generated, a measure of
confidence should be associated with the bottom-up
information stream. Then, a task dependent top-down
process can confirm (or discard) the hypotheses arising
during the execution of the task and, thus, improve the
overall performance. In this paper, we introduce such a
confidence measure and integrate it into gradient-based
edge detectors, the most popular technique today.

Three steps can be distinguished in a gradient-based

edge detection procedure.

1. Estimation of the gradient vector. The value of the
gradient magnitude ĝ and orientation �̂ is estimated
using two differentiation masks.

2. Nonmaxima suppression. Two virtual neighbors are
defined at the intersections of the gradient direction
with the 3� 3 sampling grid and the gradient
magnitude for these neighbors is interpolated from
the adjacent pixels, see Fig. 7a. The pixel in the center
of the 3� 3 neighborhood is retained for further
processing only if its gradient magnitude is the
largest of the three values.

3. Hysteresis thresholding. Two gradient magnitude

thresholds are defined ĝ�l� < ĝ�h�. All the pixels with

ĝ � ĝ�h� are retained for the edge map, while all the

pixels with ĝ � ĝ�l� are discarded. The pixels with

ĝ�l� < ĝ < ĝ�h� are retained only if they already have

at least one neighbor in the edge map. This step is

repeated till convergence.

The last two steps (postprocessing) are critical for the
quality of the edge map, e.g., [8] and the gradient-based
edge detectors in the literature differ mostly through the
details of the postprocessing [13].

The above described edge detection procedure uses the
magnitude of the gradient vector as the selection criterion.
A pixel belongs to the edge map only when the associated
gradient magnitude is sufficiently large. The information
provided by the magnitude is inherently ambiguous being
the product of two factors: the influence of the pattern of the
data and the size of the edge (discontinuity). The ambiguity,
however, can be significantly reduced if the similarity
between the data pattern and an ideal edge template is
assessed using information not employed in the computation
of the gradient magnitude. In this paper, we define such a
confidence measure and integrate it into all three steps of
the edge detection procedure.

The confidence measure is based on two ideas popular
for edge detection in the late 1970s. Hueckel [14] was
probably the first in the vision literature to use least-squares
fitting of an ideal 2D step-edge model to the data. The
estimation process was implemented with orthogonal basis
functions and the presence of an edge was determined
based on the step-size of the estimated discontinuity.
Hummel [15] extended the approach by deriving the basis
functions from the Karhunen-LoeÁve expansion of the local
image structure. The edge detector proposed by Nalwa and
Binford [24] also made extensive use of model fitting, after
an initial edge hypothesis was obtained from the gradient.
The 1D profile of the edge was refined by a sequence of
linear (cubic and quadratic polynomials) and nonlinear
(tanh function) least-squares surface fittings. While the
methods based on explicit fitting of a model to the data can
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achieve subpixel accuracy, they are computationally in-

tensive and did not show a performance improvement

relative to the simpler, gradient-based techniques. Today

they are not widely used.
The edge detector proposed by Frei and Chen [9] belongs

to a different paradigm in which both the data and the

window operators (masks) are treated as vectors in a linear

vector space. The presence of an edge was determined by

the normalized projection of the data onto an ªedge

subspace.º This subspace was defined based on four

3� 3 masks which were the dihedral rotations of a

differentiation mask on the sampling lattice with 45�

increments. Four other masks defined the ªline subspaceº

and one mask was used to compute the average of the data.

The vectors corresponding to the nine masks were taken as

the basis for R9 and the angle between the data and its

projection onto the edge subspace was used as the edge

detection criterion. Note that only the information carried

by the local pattern is employed, the influence of the

amplitude of the discontinuity is eliminated in the angle

computation. The vector space approach of Frei and

Chen was also considered in [18], [22], [26] but none of

these papers extended the method beyond the original

3� 3 window or significantly modified the original idea.
The recently proposed parametric eigenspace-based

feature detection technique of Baker et al. [3] belongs to

both the model fitting and the vector space paradigms. A

set of templates is represented in the subspace of their most

significant eigenvectors as a manifold parametrized by the

variables characterizing the pattern of these templates. The

data (if not farther than a threshold distance) is projected on

the manifold and the parameters describing it are defined

based on the neighboring templates. The edge detection

method we are introducing in this paper also uses templates

to compute the confidence in the presence of an edge.

Instead of a template manifold, however, the two-dimen-

sional subspace of the gradient operator will be used.
Most papers in the vision literature treat the optimality

of image differentiation (and edge detection) e.g., [1], [17],

[31], as well as the arising artifacts e.g., [6], in the

continuous domain. The discrete nature of the input was

also not taken into account when linear differentiation

operators were combined with Boolean logic to validate the

extracted local structure [16]. In [7], Canny's continuous

optimization criteria were translated into the discrete

domain to introduce an optimal discrete filter. Such an

approach, however, is not equivalent with analyzing the

behavior of the operator in the discrete domain. Only rarely

are low-level vision operators defined directly on the

sampling grid, e.g., [20]. In this paper, edge detection is

approached exclusively in the discrete domain as an

operation over data defined on the regular sampling lattice.
The paper is organized as follows: In Section 2, the

concepts behind our approach are introduced. In Section 3,

the gradient operator is analyzed in the discrete domain. In

Section 4, the three-step gradient-based edge detection

procedure is generalized to incorporate the confidence

measure. Experimental results are presented in Section 5.

2 WINDOW OPERATORS AS ELEMENTS IN A

VECTOR SPACE

An often performed operation in computer vision and image

processing is computing the weighted average of the data in a

�2m� 1� � �2m� 1� window sliding over the image. The

data faijg and the weights fwijg, i; j � ÿm; . . . ; 0; . . . ;m, are

combined to obtain

output �
Xm
i�ÿm

Xm
j�ÿm

wijaij �1�

and the output is associated with the center of the window,

i.e., the location on the sampling lattice corresponding to the

window coordinates i � j � 0.
Using aij or wij as the element on the ith row and jth

column, the �2m� 1� � �2m� 1� data A and weight W

matrices can be defined. The latter is the mask applied by

the window operator. Written as a matrix inner product (1)

becomes

output � trace�W>A� � trace�WA>�; �2�
where we have used the invariance properties of the trace.

See Appendix A for a short compendium on matrices. The

output of the window operator can be also written as a

vector inner product, where the vectors a � vec�A� and w �
vec�W� are obtained by stacking up the columns of the

corresponding matrices

output � w>a � a>w: �3�
InR�2m�1�2 the vector w defines a one-dimensional subspace

and let W? be its ��2m� 1�2 ÿ 1�-dimensional orthogonal

complement. Since for any b 2 W? the output of the

window operator is 0, such data is ªinvisibleº to the

window operator. As a direct consequence we have

output � w>�a� b� � w>a; �4�
showing that a very large number of data vectors (image

neighborhoods) yield the same response.
This fact is not unknown in the vision literature. For

example, it is often observed that the gradient operator can

give a large spurious response in an apparently unstruc-

tured neighborhood. As will be shown in Section 4, by

approaching the window operation in R�2m�1�2 it is possible

to predict such behavior. In practice a low-level computer

vision task requires combining the output of several

window operators, for example, the gradient is estimated

using two differentiation masks. The procedure described

in the sequel for two masks, however, can be applied in the

same way to any number and most types of masks.
Let w1 and w2 be the vectors corresponding to the two

differentiation masks. They define a hyperplane in

R�2m�1�2 and let W? be the ��2m� 1�2 ÿ 2�-dimensional

orthogonal complement of this plane (Fig. 1). By (4), W?
is the null space of the gradient operator. The projector

onto the subspace (plane) of the gradient operator is the

�2m� 1�2 � �2m� 1�2 matrix
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P � w1w
>
1

w>1 w1
�w2w

>
2

w>2 w2
: �5�

Without loss of generality it can be assumed that the data is
normalized to a unit vector, kak � 1. Its projection onto the
plane of the gradient operator is the vector Pa. The
definition of w1 and w2 implies that the orientation of Pa
in the plane is the estimated orientation of the gradient, �̂.
An ideal edge template, t, with the same estimated gradient
orientation �̂ can now be defined. Thus, the unit vector t is
always located in the plane < a;Pa > somewhere outside of
the subspace of the gradient operator (Fig. 1). Since only the
estimated gradient orientation was used to define t, only
the pattern of the data was taken into account.

Inspecting Fig. 1 suggest the definition of a simple
measure of confidence for the presence of an edge in the
data processed by the gradient operator

� � jt>aj: �6�
Both t and a being unit vectors, � is the absolute value of the

cosine of their angle in R�2m�1�2 . Interpreted in the image

domain, � is the absolute value of the correlation coefficient

between the normalized data and the template.
The confidence measure (6) may look paradoxical at first.

While in traditional template matching (matched filtering)
predefined templates are correlated with the data, here the
template is chosen based on information derived from the
data. However, Fig. 1 shows why such a process is indeed
meaningful. The template is defined using only Pa, i.e., the
information contained in the subspace of the gradient, while
� is computed based on a and t which are vectors in
R�2m�1�2 . The confidence measure incorporates information
from both the data and the template which is not in the
gradient subspace and, thus, was not used to determine �̂.
Therefore, � provides an independent estimate for the
presence of the assumed edge model in the processing
window.

In the Frei and Chen [9] edge detector, the four-
dimensional ªedge subspaceº is defined based on four
3� 3 differentiation masks which should be regarded as
templates since the gradient operator requires only two
such masks. The feature manifold proposed in [3]
contains all the possible template patterns and its
handling is computationally demanding. Both methods
use the distance of the data from the subspace of the
template as confidence measure. For the reasons dis-
cussed above the distance is a meaningful measure. The
approach proposed in this paper, however, has two
advantages. It is directly connected to the employed

window operator (of any size and type) and avoids the
computation of the feature manifold by deriving the
template directly from the data.

3 GRADIENT ESTIMATION IN THE DISCRETE DOMAIN

The gradient of a continuous surface f�x; y� at �x; y� is the
vector

rf � @f

@x

@f

@y

� �>
�7�

pointing toward the direction of largest increase on the
surface. Any Cartesian x-y coordinate system can be chosen
since it is easy to verify that the gradient magnitude

g � krfk � @f

@x

� �2

� @f

@y

� �2
" #1=2

�8�

is invariant under the rotation of the coordinate axis, while
the gradient orientation

� � tanÿ1 @f

@y

@f

@x

�� �
�9�

is equivariant, i.e., it changes according to the rotation.
In the discrete domain, only the samples f�i; j� are

available and the two partial derivatives have to be computed
by numerical differentiation. A possible approach is to
approximate the local structure of f�x; y� by a polynomial
surface which takes the value f�i; j� at the sampling points.
The polynomial coefficients are then estimated by least-
squares and the partial derivatives are analytical expressions
in these coefficients. If orthogonal polynomials defined over a
discrete interval are employed, all the computational steps
can be replaced by an a priori computed differentiation mask.
See [23] for a detailed technical presentation and Appendix B
for a short summary.

A large family of differentiation masks are separable, the
weights being obtained from the outer product of two one-
dimensional sequences s�i� and d�j�; i; j � ÿm; . . . ; 0; . . . ;m.
These masks can be written as

W � sd> �10�
and are rank-one matrices since all the columns are scaled
versions of the same vector s. A well-known advantage of
the separable masks is the about m-fold reduction in the
amount of required computations [21, p. 8]. When analyz-
ing the influence of the data pattern on the output of the
gradient operator it is more convenient to use the matrix
representation of the window operation (2) in which the
spatial structures of the data and the masks are explicit.

3.1 Properties of the Differentiation Masks

The data is noisy and differentiation along one coordinate
direction (say horizontal, x, respectively, j) has to be
combined with smoothing along the other direction
(vertical, y, respectively, i). Let d�j�; j � ÿm; . . . ; 0; . . . ;m,
be the weights carrying out numerical differentiation of the
ith row of the data matrix A. The weighted average is then
the estimate of the first derivative at the location �i; 0� in the
window. Similarly, let s�i�; i � ÿm; . . . ; 0; . . . ;m, be the
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weights carrying out smoothing of the jth column. The

result of the weighted average is the smoothed value â0j. In

the sequel, we will use both the function and the subscript

notation for the indices depending on which makes the

notation simpler.
Both sequences are defined according to the polynomial

model assumed for the underlying structure and are chosen

from the smoothed differentiation filters in Appendix B.

The following properties are always satisfied for i; j �
ÿm; . . . ; 0; . . . ;m

s�i� � s�ÿi� s�0� � s�i�
Xm
i�ÿm

s�i� � 1

d�j� � ÿd�ÿj� d�0� � 0
Xm
j�ÿm

d�j� � 0:

�11�

The two sequences are orthogonal since

s>d �
Xm
i�ÿm

s�i�d�i� �
Xÿ1

i�ÿm
s�i�d�i� �

Xm
i�1

s�i�d�i� � 0: �12�

Their symmetry properties yield a four-fold symmetry/

antisymmetry for the mask W defined in (10)

w�i; j� � w�ÿi; j� � ÿw�ÿi;ÿj� � ÿw�i;ÿj�
w�i; 0� � 0 i; j � ÿm; . . . ; 0; . . . ;m:

�13�

The mask W performs numerical differentiation along

the rows of the data followed by smoothing of the results.

Indeed,

output � trace�W>A� � trace�ds>A� � s>Ad

� s>
a>ÿmd

..

.

a>md

2664
3775 � Xm

i�ÿm
si�d>ai�;

�14�

where a>i are the rows of the data matrix A. Thus W

implements @
@x. Differentiation along the columns followed

by smoothing, implementing @
@y, is obtained with the mask

W> � ds>. This definition corresponds to the usual

window coordinates, i.e., the positive x-axis points toward

the right and the positive y-axis points downward. The

orientation of the axes is shown, for example, by the labels

in Fig. 3. It is important to notice that this x-y coordinate

system is a left-handed one. The �90� rotation from the

positive x-axis to the positive y-axis is clockwise. Note that

the relation between the two differentiation masks and their

corresponding vectors (Fig. 1) is

w1 � vec�W� w2 � vec�W>�: �15�
The Frobenius norm of W

jjWjjF � trace�W>W�ÿ �1=2� trace�ds>sd>�ÿ �1=2� ksk kdk
�16�

is the product of the vector norms of the smoothing and

differentiation sequences. The matrix W having rank one,

its Frobenius norm is also equal to the sole nonzero singular

value (A.7). Both masks are nilpotent since

WW � sd>sd> � �d>s�sd> � O �17�
based on (12). As expected, the mean value of the data
matrix A

�a � 1

�2m� 1�2
Xm
i�ÿm

Xm
j�ÿm

aij; �18�

is discarded when the differentiation masks are applied.
This constant value can be represented in the window as the
data matrix �A � �a11>, where 1 is the vector of �2m� 1�
ones. Then,

trace�W> �A� � trace �ds>�a11>� � �a�s>1��1>d� � �a � 1 � 0 � 0

�19�
by taking into account (11). Since �A � �A>, also

trace�W �A� � 0:

3.2 Properties of the Gradient Operator

The estimated gradient magnitude is

ĝ � ÿtrace2�W>A� � trace2�WA��1=2 �20�
and the estimated gradient orientation is

�̂ � tanÿ1

�
trace�WA�

trace�W>A�
�
: �21�

Normalization of the data to a unit vector (Fig. 1)
translates into matrix representation as kAkF � 1 and as we
have shown in Section 3.1 zero mean can be assumed
without loss of generality. For such data, the sample
variance of the aij-s is the constant �2m� 1�ÿ2 (A.4), which
is equivalent to the traditional standardization of a
neighborhood.

When the data is entirely in the gradient subspace, i.e.,
a 2< w1; w2 >; in matrix notation it can be written as

A � 1

jjWjjF
�cos� �W� sin� �W>�; �22�

where � is a random number (an angle in radians). The
response of the gradient operator is obtained after using the
nilpotency property of the masks (17)

ĝ � jjWjjF �̂ � �; �23�
showing that the pattern of such normalized data has no
influence on the gradient magnitude estimate. Since the
masks are matched filters for this class of data, jjWjjF is the
largest possible magnitude response for any normalized
data. It is important to emphasize that (22) does not have a
strong discontinuity in the center of the window in spite of
yielding the maximum normalized response. See Fig. 2 for
some examples.

The second class of interest is that of the symmetric data
A � A>. From (21), it can be seen that if symmetric data has
a nonzero projection onto the gradient subspace, �̂ � 45�.
The pattern of symmetric normalized data does not have an
influence on the gradient orientation estimate.

These two classes of matrices, or data similar to them,
often appear in practice and, thus, the discrete gradient
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operator may fail in capturing the information necessary for
subsequent stages of processing a vision task.

3.3 Sensitivity Analysis

Real data is almost always corrupted by measurement
errors (including quantization) which results in a perturba-
tion of the true data matrix. The measurement noise is
assumed to be independent and identically distributed
(i.i.d.). The variance of a scalar valued function of the
perturbed matrix (A.13) can be used to approximate the
influence of measurement errors on the estimated gradient
magnitude and orientation. Starting from (20), using the
chain rule of differentiation and (A.14) we obtain

@ĝ

@A
� 1

ĝ

ÿ
W � trace�W>A� �W> � trace�WA�� �24�

from where (A.13) and (17)

var�ĝ� � �2jjWjj2F: �25�
At a first order approximation the uncertainty of the
gradient magnitude does not depend on the pattern of the
data.

The variance of the estimated gradient orientation is
obtained similarly starting from (21)

@�̂

@A
�W> � trace�W>A� ÿW � trace�WA�

ĝ2
�26�

and, thus,

var��̂� � �2 jjWjj2F
ĝ2
o

; �27�

where ĝo is the estimated gradient magnitude for the true
(normalized) data matrix. The result is not unexpected, the
uncertainty of the estimated orientation increases with the
decrease of the estimated gradient magnitude. The lower
bound on the variance is �2, see (23). When the local image
structure is planar (25) and (27) hold rigorously. On the
other hand, beyond moderate noise levels the employed
linearization may not be a valid assumption.

When the estimated gradient vector is written in vector
notation (15)

ĝ � w>1 a w>2 a
� �> �28�

its covariance matrix C � ��jjWjjF�2I2 is obtained after
some simple manipulations taking into account (11). For
i.i.d. noise, the two components of the estimated gradient

vector are uncorrelated and have the same variance. Note
that this result does not involve approximations.

Since the two components of the gradient vector have
nonzero and nonequal means, when the data is corrupted
by Gaussian noise the gradient magnitude has Ricean
distribution [27, p. 47]. The variance of a random variable
obeying the Rice distribution is an extremely complicated
expression involving the gamma and the confluent hyper-
geometric functions. There is no contradiction in the
variance of the gradient magnitude (for moderate noise)
being equal to the variance of the individual components as
our simulations also confirmed.

4 EXPLOITING THE CONFIDENCE MEASURE FOR

EDGE DETECTION

In the sequel, the examples are based on a 5� 5 gradient
operator, i.e., m � 2. The proposed edge detection method,
however, is not contingent upon either the size or the
structure of the differentiation masks. The data is weighted
with binomial weights and the simplest local structure
model is assumed. Thus (see Appendix B), the two
sequences are

s�i� � hK�i; 0; 0� � �0:0625 0:25 0:375 0:25 0:0625�>
d�j� � hK�j; 1; 1� � �ÿ0:125 ÿ 0:25 0 0:25 0:125�>

�29�
yielding the masks

Wdx �W �
ÿ0:0078 ÿ0:0156 0 0:0156 0:0078

ÿ0:0312 ÿ0:0625 0 0:0625 0:0312

ÿ0:0469 ÿ0:0938 0 0:0938 0:0469

ÿ0:0312 ÿ0:0625 0 0:0625 0:0312

ÿ0:0078 ÿ0:0156 0 0:0156 0:0078

26666664

37777775
Wdy �W>:

�30�

The employed edge model is the traditional ideal step-
edge passing through the center of the neighborhood and
oriented at ÿ180� � �̂e < 180�. The value of a pixel is
computed by integrating across its unit area cross-section
and, thus, the shape of the transition region depends on �̂e.
The model is normalized having zero-mean and Frobenius
norm one. In the figures, however, the range of the gray-
level values is stretched between 0 and 255. The gradient

MEER AND GEORGESCU: EDGE DETECTION WITH EMBEDDED CONFIDENCE 1355

Fig. 2. Examples of 5� 5 neighborhoods for which the employed gradient operator has maximum normalized magnitude response.



vector always points toward the high region and the
orientation of the edge is derived from (21) as

�̂e � �̂ÿ 90 � ÿtanÿ1 trace�W>A�
trace�WA�

� �
: �31�

The examples in Fig. 3 show the relation between the
gradient and edge orientations. Recall that in the considered
coordinate system the positive angles are measured clock-
wise. The templates are ideal edge models with orientation
�̂e. When referring to a template as a matrix will use the
notation Aref and, thus, t � vec�Aref � and (6)

� � trace�A>refA�
��� ���:

From the two differentiation masks, the projector onto
the null space of the gradient operator can be computed
using (5) and (A.9). The orthonormal basis of the null space
is then obtained from the singular value decomposition of
the projection matrix (A.8). From the set of basis vectors
data ªinvisibleº to the gradient operator, i.e., noise
restricted to the null space of the operator, can be generated.
Such noise appears as a random pattern in an image.
However, if it occludes data which is ªseenº by the gradient
operator, the response of the operator is set by the latter.
This is the most probable cause of the well documented
spurious spikes in the estimated gradient magnitudes.

To illustrate the phenomenon, the pixel values in the
32� 32 gray level image in Fig. 4a were first divided by 25
and then added to the corresponding values in a
32� 32 array containing only noise in the null space
(Fig. 4b). The noise array has the property that in any
5� 5 window the response of the gradient operator is nil.
(The array is built by inverting a huge matrix which
captures the spatial relation of the data with reference to
the sliding window.) The estimated gradient magnitude is
identical for both inputs up to the normalization factor
(Figs. 4c and 4d). Since most edge detectors use percentiles
of the gradient magnitude cumulative distribution to
define the decision thresholds, the two input images will
yield identical edge maps.

The employed edge model assumes that the discontinuity
passes through the center of the neighborhood and the
templates are generated accordingly. Similar to most edge
detection procedures, the edge map output is then defined
on the same sampling lattice as the input. Subpixel accuracy
(if desired) can be achieved by analyzing the gray-level

values in the neighborhood of an edge pixel, e.g., [19].
However, to assure that the edge pixels are correctly located,
it is of interest to investigate the influence of an offset on the
estimated gradient vector and on the confidence measure �,
(6). To generate data with offset, before the pixel values are
computed the discontinuity is shifted along the direction of
the gradient (Fig. 3). The data is then normalized to zero
mean and Frobenius norm one. For a 5� 5 neighborhood, the
range of meaningful offsets is between 0 and 2.4 pixels and
the eight-fold symmetry of the edge model reduces the range
interest for the edge orientations �e to 0� ÿ 45�.

In Fig. 5a the variation of the estimated gradient
magnitude is shown. The estimates for the 46 different
orientations corresponding to the same offset are stacked
vertically. As expected, the magnitude decreases as the edge
moves away from the center of the neighborhood. The
normalization of the data introduces artifacts for large offsets
and orientations close to 0�. For example, it is easy to verify
that for a horizontal edge (�e � 0�) the normalized data
remains unchanged once the offset is at least 1.5. This explains
the shape of the right side of the scatterplot in Fig. 5a.

It is well-known that orientations estimated by a
discrete gradient operator have bias, e.g., [12 p. 344].
The amount of bias depends on �e, for example, the
employed edge model yields a maximum error of about
1� for �e � 27�, see [5, Fig. 4]. The range of estimation
errors increases with the offset and for large offsets the
estimates become practically useless (Fig. 5b).

The shape of the scatterplot of the confidence measure
(Fig. 5c) mirrors not only the effect of orientation estimation,
but also the changing relation in R�2m�1�2 between the
gradient subspace and the data vector. The 1,150 different
edge configurations represented in the scatterplot belong to
a complex shaped step-edge manifold similar to the one in
[3, Fig. 1e]. In our approach, however, explicit access to the
manifold is not required since � is computed using only the
template derived from the data. The ideal case should have
� almost one while the edge is located inside the center pixel
and should fall steeply once the offset is larger than 0.5, a
condition somewhat satisfied by the plot in Fig. 5c. This
requirement can be relaxed if all three steps of the edge
detection procedure discussed in Section 1 are extended to
take advantage of the available confidence measure. In this
case due to nonmaxima suppression only the relative value
of the confidences associated with adjacent pixels is
important.
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Fig. 3. The edge model used in the paper. Edge orientation: (a) 60�. (b) ÿ60�. (c) 120�.



4.1 Generalized Edge Detection Procedure

After gradient estimation every pixel in the image is

associated with an edge (gradient) magnitude ĝ and an

edge orientation �̂e. Instead of the magnitudes it is more

convenient to use their empirical cumulative distribution

function. Let ĝ�1� < . . . < ĝ�k� < ĝ�k�1� < . . . < ĝ�N� be the

ordered set of distinct magnitudes values. Then, for a pixel

its edge magnitude ĝ�k� is replaced with the probability

�k � Prob�ĝ � ĝ�k�� : �32�
Note that �k is the percentile of the cumulative gradient

magnitude distribution. Every pixel is now associated with

two values between 0 and 1, � and �. The former

characterizes the estimated gradient magnitude, the latter

the confidence in the presence of an edge pattern oriented

according to the estimated gradient orientation. These two
numbers define a point in the ��-diagram (Fig. 6). Similar to
the traditional edge detection procedure it is possible to
define nonmaxima suppression and hysteresis thresholding
in the context of the ��-diagram.

Let f��; �� � 0 be the implicit equation of a curve in the
�-� plane. For any point ��o; �o�, the value f��o; �o� is called
the algebraic distance of the point from the curve. The
algebraic distance of a point on the curve is zero. The sign of
the algebraic distance divides the plane into two regions.
For the ellipse segments in Fig. 6, all the points ªinsideº
have negative algebraic distances and all points ªoutsideº
have positive algebraic distances. The ellipses are used only
to illustrate the employed principles, their adequacy as
decision region boundaries is not implied as the experi-
mental results will also show.
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Fig. 4. An example of data ªinvisibleº to the employed gradient operator. (a) The 32� 32 input. (b) The scaled input corrupted with noise restricted to

the null space of the gradient operator. (c) The gradient magnitude image of (a). (d) The gradient magnitude image of (b). It differs from (c) only by a

scaling factor.



Nonmaxima suppression can be implemented using the
sign of the algebraic distance. The � and � values of the two
virtual neighborsQ1 andQ2 (Fig. 7a) are determined by linear
interpolation from those of available for P12, P13 and P31, P32,
respectively. The prototype curve f�X���; �� � 0 is inflated to
pass through P ��o; �o�, defining the decision boundary

f �X���; �� ÿ f �X���o; �o� � 0: �33�
The pixel is a local maximum only when both virtual
neighbors have negative algebraic distances. See Figs. 7b
and 7c. The nonmaxima suppression can be applied using
any f �X���; ��.

To perform hysteresis thresholding two decision bound-
aries f �L���; �� � 0 and f �H���; �� � 0 are defined in the
��-diagram. The two boundaries can have arbitrary shapes
and can intersect if necessary. They delineate three type of
regions in the ��-diagram (Fig. 6). The pixel ��o; �o� is then
classified for hysteresis thresholding as

if f�L���o;�o�>0 and f�H���o;�o��0 retain for edge map

if f�L���o;�o��f �H���o;�o�<0 retain if neigbor in edge map

if f�L���o;�o��0 and f �H���o;�o�<0 discard

the second condition being applied recursively.
Postprocessing in the ��-diagram is the natural extension

of the traditional procedure. Indeed, if all the decision
boundaries are vertical lines

f �L���; �� � �l f �H���; �� � �h f �X���; �� � � �35�

both nonmaxima suppression and hysteresis thresholding

will be exclusively based on gradient magnitude and,

thus, the new method defaults into the traditional

approach. If the f��; �� are chosen as polygonal contours,

a ªpoint in polygonº algorithm from computational

geometry [25 p. 239], can be used to determine if the

point is inside or outside of the (not necessarily convex)

polygon defined by f��; �� and the coordinate axes.
To conclude, the computational steps of edge detection

with embedded confidence are as follows:

1. For every pixel in the image (except on the borders)

- Estimate the gradient magnitude ĝ and edge
orientation �̂e.

- Normalize the data in the window A to zero
mean and Frobenius norm one.

- Define based on �̂e the template Aref .
- Compute �.

2. Define for each pixel its � value from the cumulative
distribution of ĝ.

3. Generate the ��-diagram of the image.
4. Nonmaxima suppression.
5. Hysteresis thresholding.

Using a look-up table for the templates keeps the amount of

computations not much larger than in the traditional

approach. A resolution of 1� for Aref should suffice in any

practical situation.

5 EXPERIMENTAL RESULTS

The edge detection procedure with embedded confidence

was implemented in C++ as a self-standing system with a

graphic interface. The user defines the employed gradient

operator (the 1D sequences and the window size), as well as

the parameters of the three decision boundaries used in the

��-diagram, f �X�, f �L�, and f �H�. The following options are

available for each curve:

. horizontal/vertical line, requires one parameter;

. box aligned with the coordinate axes, requires two
parameters;
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Fig. 5. Scatterplots for ideal normalized edges in a 5� 5 neighborhood having orientations between 0� and 45� (1� steps) and offsets between 0 and

2.5 pixel units (0.1 steps). (a) Estimated edge magnitude. (b) Error in the estimated edge orientation. (c) The confidence �.

Fig. 6. The ��-diagram.



. ellipse (first quadrant) with the center in the origin,
requires two parameters;

. user drawn arbitrary polygonal line.

The minimum length of an edge in the edge map can be
also specified. In all our experiments this value was taken
equal to five pixels. The source code of the system with a
GUI is available at the Web site www.caip.rutgers.edu/
riul/research/code.html.

The four images used in the reported experiments are
all well-known in the literature. Three of them basket,
grater, golf-cart are among the images used in the
exhaustive edge detector performance study of the Image
Analysis Research Laboratory at the University of South
Florida (USF), Tampa. Their main results are presented in
[13], while the Web site marathon.csee.usf.edu/edge/
edgecompare_main.html contains all the related informa-
tion. The USF group is to be commended for the
thoroughness of their survey and their Web site should
be consulted for edge maps of these (and many other)
images obtained with all the state-of-the-art techniques.
The cameraman is probably one of the oldest test images
in the field, being often used in edge detection papers
including [5] in a context similar to the present work.

The 512� 512 basket image (Fig. 8) was processed with a
7� 7 gradient operator. (In all the experiments the data is
weighted with binomial weights.) The image is very
challenging since to remove the grass from the edge map
while preserving the rendition of the basket as accurate
as possible, are conflicting goals. The traditional edge

magnitude-based approach, i.e., the Canny detector, is
shown in Figs. 9a and 9b. In this case the nonmaxima
suppression in the ��-diagram is performed with vertical
lines. The ��-diagram in Fig. 9a (and all the other diagrams
in the paper) is shown after nonmaxima suppression and it
is also subsampled for displaying purposes. As expected,
the texture of the grass cannot be eliminated without
removing most of the details of the basket. See also [13,
Fig. 8] for results obtained with other edge detectors.

To define an edge map based only on the confidence
measures all three decision boundaries have to be hor-
izontal lines. The ��-diagram obtained after nonmaxima
suppression (Fig. 9c) is different from the one in Fig. 9a. In
the edge map (Fig. 9d) most of the grass texture is now
eliminated since it does not obey the edge model and the
basket is also better rendered.

To obtain the best performance the whole potential of the
��-diagram has to be exploited. The nonmaxima suppres-
sion is based on horizontal lines (confidence only) and the
user drawn hysteresis thresholding boundaries are shown
in Fig. 9e. The resulting edge map (Fig. 9f) is clearly
superior. The processing took under four seconds on
350Mhz Pentium II. For the same image, a standard
implementation of the Canny edge detector runs in about
one second.

The 256� 256 cameraman image (Fig. 10a) was processed

with a 5� 5 gradient operator. The challenge is to preserve

the towers in the background while eliminating the texture

of the lawn. As was shown in [5, Fig. 10], the gradient has

smaller magnitude for the right tower than for most of the

lawn. The performance of the Canny detector (focused to

remove the clutter on the lawn) is shown in Fig. 10b. The

nonmaxima suppression in the ��-diagram was based on

ellipse segments. The hysteresis thresholding boundaries

are standard curves (Fig. 10c) and the obtained edge map

preserves all the details of interest without a significant

clutter on the lawn (Fig. 10d). It should be noted that while

the result obtained in [5, Fig. 13] has similar quality, would

require tens of minutes of processing.
The 512� 438 grater image (Fig. 11a) has many

important details which yield small edge magnitudes.
When processed traditionally with a 7� 7 gradient
operator (Fig. 11b) the edge map appears of good quality.
However, a close inspection reveals that features like: the
left shadow of the microwave, the upper edge of the
tabletop, the grill inside the microwave, the edge of the
wall protector, the vent on the top of the microwave, etc.
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Fig. 8. The basket image.

Fig. 7. Nonmaxima suppression in the ��-diagram. (a) The two virtual neighbors are defined based on the estimated gradient orientation. (b) The

pixel is not a local maximum. (c) The pixel is a local maximum.



are not retained, Using a vertical line (magnitude only)

for nonmaxima suppression and the same decision

boundaries for hysteresis thresholding (Fig. 11c) as for

the cameraman, the new edge map (Fig. 11d) contains all

these details without introducing clutter.

The last example is the 548� 509 golf-cart image (Fig. 12a).

It was processed with a 7� 7 gradient operator. The Canny

edge map (Fig. 12b) provides a good quality rendition at the

price of retaining the texture of the trees in the background

and of the grass in the front. Similar results were obtained
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Fig. 9. Results for the basket image. Left: ��-diagrams (after nonmaxima suppression) with the hysteresis thresholding boundaries superposed.

Right: corresponding edge map. The employed strategy: (a), (b) magnitude only; (c), (d) confidence only; (e), (f) combined.



with all the other edge detectors in the USF study [13, Fig. 7].
Using a horizontal line (confidences only) for nonmaxima
suppression and standard decision boundaries as in Fig. 12c,
most of the potentially undesirable texture is eliminated.
Note that the top of the trees defines edges which obey the
assumed model.

The results prove the power of the edge detection
procedure with embedded confidence. The only change
relative to the traditional three-step technique is its
extension to the ��-diagram. By adequately choosing the
decision boundaries the two postprocessing steps can be
better focused toward the final goal of a task. Replacement
of the decisions taken based on a one-dimensional
magnitude sequence with those based on a two-dimen-
sional map, may seem to increase the difficulty of
automatically choosing the proper thresholds. However,
this is not the case since decision boundaries with standard
shapes (equivalent to percentiles in traditional edge detec-
tion) usually provide satisfactory performance.

In closed-loop processing with a well-defined goal for the
task, the decision boundaries can be established in an optimal
Bayesian sense, e.g., [28]. A top-down process having access
to the confidences can extract the evidence supporting (or
discarding) hypotheses generated at higher levels of the

vision task execution. Note also that the region of the
��-diagram which corresponds to the use of local spatial
processes when defining the edge map (algebraic distances of
opposite signs) can be the concatenation of several detached
areas, thus enabling very accurate definition of edges.

6 CONCLUSIONS

The paradigm proposed in this paper is not restricted to
gradient-based edge detection. It is based on the observa-
tion that input information in the orthogonal complement of
the subspace associated with a window operator is not used
when the operator is applied to the data. This information
thus can be exploited to assess the confidence in the
performed operation. First, parametrized by the output of
the operator a task specific hypothesis about the input (a
template) is defined. Since the template also contains
information in the null space of the operator, its validity
can be independently tested against the input. The test is just
a simple correlation, i.e., template matching. Within the
context of a larger task, a more accurate output according to
the assumed model can be obtained.

The new paradigm has the potential to improve the
performance of low-level vision operators which are the
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Fig. 10. The cameraman image. (a) Input. (b) Traditional (Canny) edge map. (c) The ��-diagram (after nonmaxima suppression). (d) New edge map.



main bottleneck of most vision algorithms. As any solution
to a difficult problem, this one is also not perfect. By
validating the output based on a finely tuned class of
templates, significant features not obeying the model may
not be discriminated. In the edge detection case this was not
a problem since the hysteresis thresholding step fills in most
missed corners. Using more general (invariant under a
transformation group) or multiple models, most of the
drawbacks of ªnarrowº templates can be avoided. The
proposed paradigm can be of help when developing closed-
loop vision systems in which the higher level modules
having access to global information compensate for the
deficiency of the local feature extraction processes.

APPENDIX A

COMPENDIUM ON MATRICES

In this appendix, the matrix properties employed through-
out the paper are reviewed. For more background on
introductory topics see [30], on advanced topics [10], and on
matrix calculus [11].

Let A be an n� p matrix having rank r. Without loss of

generality will assume r � p � n. The trace of the matrix is

trace�A� �
Xp
i�1

aii �
Xr
i�1

�i; �A:1�

where �i are the eigenvalues of A. The trace of a scalar is the

scalar itself and the trace has the following invariance

properties:

trace�A� � trace�A>�
trace�ABC� � trace�CAB� � trace�BCA�; �A:2�

where B and C are matrices with corresponding dimensions.

The invariance of trace to cyclic permutations is an important

property which can often simplify matrix manipulations.
The inner (scalar) product of two n� p matrices A and B

�A;B� � trace�A>B� � trace�B>A� �A:3�
satisfies all the well-known properties of an inner product.

The Frobenius norm of the matrix A

jjAjj2F � jjA>jj2F � �A;A� � trace�A>A� �
Xn
i�1

Xp
j�1

a2
ij �A:4�

is often used and the Cauchy-Schwartz inequality becomes

1362 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 12, DECEMBER 2001

Fig. 11. The grater image. (a) Input. (b) Traditional (Canny) edge map. (c) The ��-diagram (after nonmaxima suppression). (d) New edge map.



trace�A>B��� �� � jjAjjFjjBjjF �A:5�
with equality iff A � �B.

The singular value decomposition (svd) of A is defined as

A � U�V>; �A:6�
where U is an n� n and V a p� p orthonormal matrix. The

n� p diagonal matrix � has r positive numbers arranged in

descending order, the singular values �k of A. The nonzero

eigenvalues of AA> and A>A are �2
k. The Frobenius norm of

A is then

jjAjjF �
Xr
k�1

�2
k

 !1=2

: �A:7�

The column vectors of U and V provide orthonormal bases

for the different subspaces associated with the matrix A.

The vectors fu1; . . . ;urg span the range R�A� and the

vectors fvr�1; . . . ;vpg span the null space N�A�, while

fv1; . . . ;vrg span R�A>� and fur�1; . . . ;ung span N�A>�.
Thus, R�A� and N�A>� are orthogonal complements in Rn,

while R�A>� and N�A� are orthogonal complements in Rp.

Let the vectors fb1; . . . ;bqg be an orthonormal basis for a
q � n dimensional subspace S � Rn. The n� n projection
matrix P

P �
Xq
k�1

bkb
>
k P � P> P2 � P �P � P �A:8�

has rank q, it is symmetric and idempotent, and projects
orthogonally onto S. The rank nÿ q matrix

Q � In ÿP �A:9�
is the projection matrix onto the orthogonal complement of
S in Rn.

The operator vec�A� yields the vector a obtained by
stacking up the columns of A. It can be shown that

trace�AB� � vec�A>�>vec�B�: �A:10�
Let f�A� be a scalar valued function of the matrix A and
assume that

A � Ao � �A; �A:11�
where Ao is the uncorrupted ªtrueº value and �A is a zero-
mean perturbation matrix with i.i.d. elements. Thus,
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Fig. 12. The golf-cart image. (a) Input. (b) Traditional (Canny) edge map. (c) The ��-diagram (after nonmaxima suppression). (d) New edge map.



vec�A � �a � G�0; �2Inp�. The variance of f�A� can be
approximated by error propagation. The linear approxima-
tion of f�A� around Ao is obtained from the Taylor expansion

f�A� � f�a� � f�ao � �a� � f�ao� � rf>�a; �A:12�
where rf is the gradient of f with respect to a computed in
ao. Assuming that the plug-in principle holds (the function
of the mean can be used as substitute for the mean of the
function) the variance becomes

var�f�A�� � �2rf>rf � �2trace

�
@f

@Ao

� �> @f

@Ao

�
; �A:13�

where the derivative of a scalar function with respect to a

matrix is the gradient matrix having as the ijth element @f
@aij

.

The gradient matrix is computed for the true value Ao. The

following gradient matrices:

@trace�WA�
@A

�W> @trace�W>A�
@A

�W �A:14�

are often used in the paper.

APPENDIX B

SMOOTHED DIFFERENTIATION FILTERS

In this Appendix, we define a class of smoothed
differentiation filters, list their main properties and give
the expression of a few of them. For details, see [23]. A
complete list of filters for higher degree polynomials and
differentiation orders can be also found at the Web site
www.caip.rutgers.edu/riul/research/tutorial.html.

The filters provide the closed form, optimal (in least-
squares sense) solution to the following problem:

The discrete data defined on a regular one-dimensional grid
i � ÿm; . . . ; 0; . . . ; m, is assumed to represent samples of a
degree p polynomial corrupted additively by zero-mean
measurement noise. Estimate in i � 0 the value of the rth
(r � p) derivative of the underlying polynomial.

The filters are built using orthogonal polynomial bases
defined over a discrete interval. Chebyshev polynomials
yield the filters for unweighted data, Krawtchouk poly-
nomials yield the filters for data weighted with binomial
weights. Note that the filters are valid only for the regular
sampling grid which is a necessary condition for the
orthogonality of the polynomials.

The sequence h�i; r; p�; i � ÿm; . . . ; 0; . . . ;m, is the filter
for estimating the rth derivative when a degree-p poly-
nomial is assumed for the underlying structure and it is
applied as

output �
Xm
i�ÿm

h�i; r; p� � input�i� �B:1�

Some important properties:

. The same filter is obtained for two consecutive
degrees of the underlying polynomial. For any given
r and p such that mod�r� p; 2� � 0,

h�i; r; p� � h�i; r; p� 1�:

. h�ÿi; r; p� � �ÿ1�rh�i; r; p�

. When the input consist of the uncorrupted samples
of a polynomial (up to degree p), the output is the
theoretical value, i.e., it is not distorted.

. The smoothing filters, i.e., h�i; 0; p�,
- preserve the first p moments of the true

(uncorrupted) input
- achieve maximal (in least-squares sense) noise

rejection.

Combining two filters in an outer product provides
2D window operators. For example, weighting the data
(using filters derived from the Krawtchouk polynomials)
and smoothing along one coordinate with constant/linear
underlying structure, while computing the first derivative
along the other coordinate with linear/quadratic structure,
yields a gradient operator very similar to one in the widely
used implementation of the Canny edge detector.

Unweighted Data. The filters hC�i; r; p� are built using the

Chebyshev polynomials, p being the smaller of the two

polynomial degrees yielding identical sequences.
Smoothing. r � 0. p � 0 or 1

hC�i; 0; 0� � 1

2m� 1
:

Smoothing. r � 0. p � 2 or 3.

hC�i; 0; 2� � ÿ 3�5i2 ÿ �3m2 � 3mÿ 1��
�2mÿ 1��2m� 1��2m� 3�:

First derivative. r � 1. p � 1 or 2.

hC�i; 1; 1� � 3i

m�m� 1��2m� 1� :

First derivative. r � 1. p � 3 or 4.

hC�i; 1; 3� �

ÿ 5�7�3m2 � 3mÿ 1�i3 ÿ 5�3m4 � 6m3 ÿ 3m� 1�i�
�mÿ 1�m�m� 1��m� 2��2mÿ 1��2m� 1��2m� 3� :

Weighted Data. The filters hK�i; r; p� are built using the
Krawtchouk polynomials, p being the smaller of the two
polynomial degrees yielding identical sequences. The
binomial weights

w�i� � 1

22m

2m

m� i
� �

� 1

22m

�2m�!
�mÿ i�!�m� i�!

i � ÿm; . . . ; 0; . . . ;m

are common to all the filters.
Smoothing. r � 0. p � 0 or 1.

hK�i; 0; 0� � w�i�:
Smoothing. r � 0. p � 2 or 3.

hK�i; 0; 2� � ÿ 2i2 ÿ �3mÿ 1�
2mÿ 1

w�i�:

First derivative. r � 1. p � 1 or 2.

hK�i; 1; 1� � 2i

m
w�i�:
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First derivative. r � 1. p � 3 or 4.

hK�i; 1; 3� � ÿ 2�2�3mÿ 1�i3 ÿ �15m2 ÿ 15m� 4�i�
3�mÿ 1�m�2mÿ 1� w�i�:
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