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Summary In many subspecialties of pathology, the intrinsic complexity of render-
ing accurate diagnostic decisions is compounded by a lack of definitive criteria for
detecting and characterizing diseases and their corresponding histological features.
In some cases, there exists a striking disparity between the diagnoses rendered by
recognized authorities and those provided by non-experts. We previously reported
the development of an Image Guided Decision Support (IGDS) system, which was
shown to reliably discriminate among malignant lymphomas and leukemia that are
sometimes confused with one another during routine microscopic evaluation. As
an extension of those efforts, we report here a web-based intelligent archiving
subsystem that can automatically detect, image, and index new cells into distributed
ground-truth databases. Systematic experiments showed that through the use
of robust texture descriptors and density estimation based fusion the reliability
and performance of the governing classifications of the system were improved
significantly while simultaneously reducing the dimensionality of the feature space.
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1. Introduction

1.1. Clinical significance

A differential diagnosis provides the basis for
how patients are treated, which medications are
appropriate, and what levels of risk are justified.
As new treatments and therapies become available
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it is essential to distinguish among subclasses of
pathologies [1]. The peripheral blood of patients
is routinely screened for abnormalities, however,
the subtle visible differences exhibited by some
disorders can lead to a significant number of false
negatives during routine microscopic evaluation of
specimens.

Mantle cell lymphoma (MCL) is an intermediate
grade lymphoma with a 3—5 year median survival
rate [2—4]. MCL morphology is generally described
as a monotonous proliferation of small to medium
sized lymphoid cells with scant cytoplasm,
variably irregular, round or indented nuclei,
dispersed chromatin, and inconspicuous nucleoli.
However, the disease may exhibit a spectrum of
presentations, which can sometimes be confused
with other lymphomas that follow a less aggressive
clinical course. Chronic lymphocytic leukemia
(CLL) and follicular center cell lymphoma (FCC)
are two examples, which were considered in our
studies. The main objective of our research was to
develop and optimize image-based methods which
would provide quick, reliable decision support in
detecting and characterizing these disorders.

Immunophenotyping with flowcytometry is

focused on pathology. These include the Pathex
framework and the Pathex/Red system [18] for
assisting pathologists with laboratory data at Ohio
State University, ECLIPS [19] at the University of
Illinois Urbana, as well as the PathFinder project on
anatomic pathology diagnosis [20] at the University
of Southern California and Stanford. In PathFinder,
an expert system provides a differential diagnosis
based on the initial histological feature(s) observed
by the pathologists, and suggests to the user
additional histological features for observation that
are likely to narrow the differential diagnosis,
thus helping to screen for observations which are
incompatible with a given disease or disorder.

While the mechanisms for content-based access
to alphanumeric data have been extensively stud-
ied, and are now considered relatively well under-
stood, content-based image access remains elusive
and is an active area of research in the computer
vision and image processing communities, as well as
in disparate application domains, such as remote
sensing, diagnostic medicine, molecular biology,
pharmacy, and computer aided design. Technolo-
gies that capture, describe, and index the visual
essence of multimedia objects rely on the methods
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considered a definitive approach for reliably
differentiating among lymphoproliferative diseases
[3—7]. However, because of the time and expense
of implementing studies, it is not generally utilized
unless a case is first categorized as suspicious
during microscopic evaluation. Throughout the
course of our studies the diagnosis determined
by immunophenotyping was considered as the
gold-standard for gauging the performance of the
image guided approach [8].

1.2. Technical significance

Recent literature ascribes much of the difficulty
in rendering consistent diagnoses to the subjective
impressions of observers and shows that, whenmor-
phologic cell classification is based upon computer-
aided analysis, objectivity, and reproducibility can
be made to improve considerably [9—12]. Using
these techniques it may be possible to detect and
track subtle changes in measurable parameters
leading to the discovery of novel diagnostic clues,
which may not be apparent by human visual
inspection alone.

Developing approaches that can reliably trans-
form complex diagnostic concepts into well-
defined algorithmic procedures is an active area
of research [13—17]. Diagnostic pathology offers a
rich environment for conducting such studies. Thus,
several major projects in artificial intelligence have
nd principles of image analysis, pattern recog-
ition, and database theory. This relatively new
rea of research spans a spectrum of applications
21—24]. A survey of content-based image retrieval
CBIR) was recently presented by Antani et al. [25].
Several general-purpose CBIR systems have been

eveloped such as the IBM QBIC system [26], the
hotobook system [27], the WBIIS system [28],
he Blobworld system [29], and the SIMPLIcity
ystem [30]. These systems are not suited for
ost pathology applications, however, because of
he special characteristics of digitized pathology
uch as the high resolution of the images and
hromatic profiles of the stained specimens. Over
he past few years there has been increased
nterest and effort applied to utilizing CBIR in
edical applications [31—33]. Individual strategies
nd approaches differ according to the degree
f generality (general purpose versus domain
pecific), level of feature abstraction (primitive
eature versus logical features), overall dissimi-
arity measure used in retrieval ranking, database
ndexing procedure, level of user intervention
with or without relevance feedback), and by the
ethods used to evaluate their performance. The
ittsburgh Supercomputing Center has developed
system which utilizes global characteristics of

mages to provide a measure of Gleason grade
f prostate tumors [34]. Wang from Pennsylvania
tate University emphasizes the use of wavelet
echnology and integrated region matching (IRM)
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distances for characterizing pathology images [35].
The system indexes block segments of images at
different scales by partitioning the original image
into smaller overlapping blocks. The CBIR engine is
interfaced with a server that allows users to browse
portions of the original matched image at different
scales. This system differs from the system that we
are developing, both in design and purpose. The
system from Penn State emphasizes the general
tasks of retrieval and browsing whereas the system
that we have proposed focuses on developing a
set of portable, web-based tools for collaborative
studies and clinical decision support.

1.3. The PathMiner project

We have already reported the design and develop-
ment of an Image Guided Decision Support (IGDS)
system, which was shown to reliably discriminate
among a set of lymphoproliferative disorders that
can sometimes be confused with one another during
routine microscopic evaluation. The IGDS system
automatically identifies and retrieves images,
diagnosis, and correlated clinical data of those
cases from within a ‘‘gold-standard’’ database
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exploit the statistical methods that are utilized for
discriminating among disorders.

The PathMiner project consists of three sub-
systems: the Distributed Telemicroscopy (DT) sub-
system, the Intelligent Archiving (IA) subsystem,
and the IGDS subsystem. The first generation DT
subsystem [6] provides a distributed telepathology
environment by enabling multiple users from dis-
parate clinical and research sites to simultaneously
control robotic microscopes from remote locations
while each session participant receives a digital
broadcast of the specimen. The IA subsystem facil-
itates the automated population and management
of databases through the use of unsupervised
scanning and indexing of candidate lymphocytes. In
this paper, we report how through the use of robust
texture descriptors and density estimation based
data fusion the reliability and performance of the
governing classifications was significantly improved
while simultaneously reducing the dimensionality
of the feature space.

With minimal exceptions, the software modules
of PathMiner project were implemented using the
JAVA programming language to provide maximum
portability.

2

2

2
C
c
o
p
c
d
T
s
g
T
t
s
a
c
c
m

v
I
s
9
e
m

hose spectral and spatial profiles are most similar
o a given query image. The system suggests the
ost likely diagnosis based on majority logic of
he retrieved cases. Man—machine performance
omparison studies showed that the image-guided
pproach provided significant improvement in dis-
riminating among disorders while simultaneously
educing the frequency of false negatives. One
roject which is closely related to our research is
he PathMaster system from Yale University, which
s a content-based retrieval system that was used
o discriminate among specimens of mantle cell
ymphoma and small cell lymphomas [36] that are
repared using a touch prep protocol. This system
mplements semi-automatic segmentation utilizing
ommercial, off-the-shelf image segmentation
Adobe PhotoShop) and does not exploit the
otential of advanced computer vision techniques.
ithin this system each cell can be represented by
ore than 2000 features, but the question of which
f the features belong to an optimal subset was not
xplored.
The PathMiner project, that we have under-

aken, started as an effort to establish a large-
cale web-based pathology image database, which
ould provide clinical decision support and medical
ducation based on statistical pattern recognition
nd CBIR. Since each of the diseases under study
ay exhibit a spectrum of morphologies, it was

mportant that the database contain a sufficiently
arge number of cases. This allows us to effectively
. Methods

.1. Classification optimization of IGDS

.1.1. Optimization condition
ross validation methods are widely used in statisti-
al pattern recognition to determine the robustness
f an algorithm by evaluating generalization
erformance based on ‘‘resampling’’. The k-fold
ross validation approach first randomly divides
ata into k subsets of approximately the same size.
he ‘‘test algorithm’’ is then trained with k− 1
ubsets, and tested with the remaining subset to
enerate the appropriate performance measure.
he training and testing session is executed k
imes, with each iteration utilizing different
ubsets for testing. Therefore, when smaller k’s
re used fewer samples are utilized for training thus
reating a heightened challenge for the algorithm’s
apacity to produce the same performance
easure.
Because of limited sample size, a 10-fold cross

alidation was used in the original IGDS study [6].
n order to further evaluate the robustness and
tability of the IGDS system, a balanced mix of over
00 test cells was recently established. Therefore,
xperiments reported in the current study used the
uch more stringent two-fold cross validation and
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were aimed to maximize correct classification rate,
defined as

correct clasification rate

= number of correctly classified cells
total number of cells

(1)

2.1.2. Algorithms used in the current IGDS
The original IGDS scheme used a simplex strategy
[37] based on an eight nearest neighbor search [38]
across the weighted-sum of distances. Weighting
factors for shape, texture, and area, were tested
on the new dataset. In order to gain better insight
into the nature of the high-dimensional data set,
additional experiments were conducted using joint-
ordering (sum of rank) [6,39]. These studies demon-
strated a much more stable performance and re-
vealed that area and texture feature measurements
contributed most to an optimized classification.
These observations led us to focus our efforts on
investigating the potentials of multivariate data fu-
sion for improving the discrimination performance
and robustness of the governing algorithms.

size of the overlapping neighborhoods must be
sufficiently large to capture the texture character-
istics, while remaining small enough to maintain
low texture variability across the image. The multi-
resolution SAR (MRSAR) uses multiple neighborhood
sizes to accommodate complex texture types.

In the first generation IGDS prototype, the
MRSAR descriptor was computed for each region-
of-interest (ROI) as described by Mao and Jain
[40]. Three different neighborhood sizes (5× 5,
7× 7, and 9× 9, see Fig. 1a) were simultane-
ously investigated to provide multi-scale texture
information. At each examined nuclear pixel, the
descriptor was estimated using pixel luminance (L*)
value throughout a 21× 21 window. By combining
symmetric neighbor pixels in the estimation,
the resulting texture feature vector was 15-
dimensional (4 neighbor directions + 1 residual)× 3
neighborhood sizes. The least square method was
used in the linear regression. A 15-dimensional
mean vector and 15× 15 covariance matrix of the
texture feature were then computed for the entire
ROI and stored for database query.

In an attempt to improve the robustness of the
estimation while reducing the dimensionality of the
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2.1.3. Region Simultaneous Autoregressive
(RSAR) model
The Simultaneous Autoregressive (SAR) model is
a linear regressive model often used in imaging
applications involving texture analysis. It defines
the texture feature by computing SAR coefficients
�, the intersect �, and the standard deviation of
the residual ε over a specified area as

I(x) = � +
∑
y ∈ N

�(y)I(y) + ε(x) (2)

in neighborhood N. Depending on data normaliza-
tion, � can sometimes be considered 0 and omitted
from the regression calculation.

SAR regression is usually performed over over-
lapping neighborhoods centered at the pixel of
interest. To achieve adequate texture analysis, the

Fig. 1 Neighborhoods used in MRSAR and RSAR metho
symmetrical neighborhood used in the RSAR method. (c)
exture descriptor, the SAR model was modified
sing an approach that we refer to as region
AR. This algorithm differs from the MRSAR model
n two aspects. First, since the original MRSAR
mplementation was designed with the purpose of
exture segmentation, estimates are generated in
elatively small local windows to maintain local
nformation. Since the desired parameters are of
igh-dimensionality (15), the estimation from a
et of 21× 21 windows is not very robust from
statistical point of view. Another limitation of

he MRSAR implementation was that it positioned
he 21× 21 windows with considerable overlap,
iving rise to a substantial amount of redundancy in
omputing the estimation of local texture features.
ince texture-based segmentation was not the goal
f our application, we reasoned that it would not
e necessary to estimate local texture features in

a) Neighborhood used in the MRSAR method. (b) Non-
metrical neighborhood used in the RSAR method.
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the 21× 21 windows. Instead, the SAR parameters
are only estimated in the ROIs, i.e., cell nuclei.
This strategy proved to be more robust since the
estimation was conducted with a much richer infor-
mational content, while simultaneously maintain-
ing efficiency in terms of computational complexity.

Second, although multiple neighborhood sizes
capture more contextual information for each
pixel, the actual information that is retrieved from
multiple neighborhood sizes is strongly correlated
with one another and does not provide much of
an advantage in terms of texture discrimination.
On the contrary, it suffers from the potential
drawback of the ‘‘curse of high-dimensionality’’
[41,42]. To investigate this logic only a single
window was utilized during the course of our
experiments to evaluate the new descriptor. A
series of systematic experiments was conducted
using varying neighborhood sizes to determine the
optimal dimensions for this application (please see
Section 4 below). A set of comparative performance
studies was also conducted to evaluate the use of
symmetric and non-symmetric neighborhoods. In
the case of the non-symmetric approach each of
the eight neighbors in the window was considered
s
o
l
d

2
D
a
t
s
a
B
c
f

o
f
d
t
s
i
o
i
e

e
t
l
3
n
t

to a certain class i is computed as

pi = Pi ×
∏

f ∈ features

p
f
i (i = 1, 2, 3, 4; features

= {area, texture}) (3)

The proposed classification of each cell was
computed as

class = {i|pi = max(pj) j = 1, 2, 3, 4} (4)

As in most real world scenarios, the probability
density distribution is unknown. To address this
problem, kernel-based probability density estima-
tion methods were used to give a robust estimation
of the local probability density based on the
available data. Kernel-based probability density
estimation methods can be understood as follows:
in order to estimate the probability density at y,
we analyze from given data all points which fall
within an ellipsoid that is centered at y, while
the contribution of each of these points to the
estimation is based on a kernel function k. It is
important to generate the appropriate kernel size
h for adequate estimation.
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eparately (see Fig. 1b), whereas in the case
f symmetric neighborhoods, the symmetrically
ocated pixels were combined, thus reducing
imensionality by half (see Fig. 1c).

.1.4. Data fusion
ata fusion is an active area of research with
pplication to the field of CBIR, which attempts
o integrate the informational content of disparate
ources or modalities in order to improve precision
nd accuracy of retrievals from an image database.
ased upon our previous work in CBIR, we
oncentrated our efforts on feature measurements
or area and texture.
Probability density-based approaches are one

f the methods that are being actively evaluated
or use in data fusion applications. Probability
ensity strategies are derived from the popular
heory that the joint conditional probability of
everal independent events is the product of their
ndividual conditional probabilities. The essence
f effectively using a probability-based method
n data fusion is dependent upon appropriate
stimation of conditional probability densities.
For the purposes of analysis a set of governing

quations was established. Letting i serve as
he class indicator, where i = 1 for mantle cell
ymphoma, 2 for chronic lymphocytic leukemia,
for follicular center cell lymphoma, and 4 for
ormal; P is the a priori probability for each class;
he combined probability for each cell belonging
The probability density for nuclear area was
stimated using

ˆareai (y) = 1
nihi

ni∑
j=1

k

( |y − yj|
hi

)
(5)

here the kernel was computed as

(u) =
{

35
32 (1 − (1 − u2)

3
) 0 ≤ |u| ≤ 1

0 |u| > 1
(6)

ith the bandwidth estimated by

i =
ni

median
j=1

∣∣∣∣yj −
ni

median|yk|
k=1

i = 1, 2, 3, 4
∣∣∣∣ . (7)

The probability density for the RSAR texture
escriptor was derived from a previous implemen-
ation [43] and in our studies was computed as

ˆtexturei (y) = Ck,d

ni(�2
�,p)

p/2

ni∑
j=1

[
det
[

Cy

t

]− 1
2

× k

(
1

�2
�,d

D

(
y, yj,

Cy

t

))]
(8)

here D is Mahalanobis distance, and the kernel is

(u) =
{
1 − u 0 ≤ |u| ≤ 1
0 |u| > 1

(9)
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and bandwidth matrices are

Hy = �2
�,pCy

t
(10)

where t is used to justify the kernel size since the
covariance matrices Cy are singular in our case, and
�2

�,p is the chi-square value for p degrees of freedom
and level of confidence � (� = 0.85 is used in these
experiments).

3. Intelligent archiving system

Prior to the development and implementation of
the IA subsystem, indexing new cases into the
database involved multiple steps. First, patholo-
gists systematically reviewed specimens manually
at low magnification to identify cells of interest.
Each of those cells was interactively brought
into focus at high magnification while capturing
a digital image. Subsequently, one by one, each
imaged cell was loaded into the IGDS system,
automatically segmented and indexed into the
image repository while an entry was created in

as an alternative high resolution imaging
source.

3.1.2. Implementation

In the first generation distributed telemicroscopy
prototype [6], remote control of the robotic
microscope over the web was highly interactive,
requiring the operator to play a continuous,
interactive role. A computer assisted microscopy
(CAM) server module was recently developed
to provide intelligent control and coordination
among each of the four primary devices — the
robotic stage, the motorized objective turret,
an image acquisition board, and the camera —
while simultaneously performing unsupervised
processing and analysis of specimens. This CAM
server module features a coordinate system, which
takes into account both the stage position and the
optical configuration of each objective in order to
accurately and reliably map coordinates between
the physical specimen and the optical and digital
fields of view. The system automatically corrects for
hardware objective co-centering error and can be
easily re-calibrated to accommodate new hardware
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the database with regard to the location of the
corresponding images and feature measurements.
The newly developed IA subsystem now serves to
reduce the level of intervention on the part of
pathologists since the driving software directs the
robotics and imaging devices to automatically scan
specimens while detecting and imaging candidate
lymphocytes and extracting their image feature
measurements. The IA subsystem automatically
populates and manages the appropriate databases.
Since the IA subsystem is web-based, it is being
used to facilitate inter-institutional collaborations
on the PathMiner project.

3.1.1. Development platform

The original web-based, robotic microscope
control module was developed using an Olympus
AX70 microscope equipped with a Prior 6-way
robotic stage and motorized turret. The minimum
requirements for server workstations consist
of a standard Pentium IV computer, equipped
with 512 Mbytes of RAM, and a Windows 2000
operating system. The software automatically
images and digitizes the pathology specimens using
an Olympus DC330 720-line, 3-chip video camera,
and a flashpoint 128 high-resolution frame grabber.
An Olympus DP70, 12-bit color depth for each color
channel, 1.45million pixel effective resolution,
single 2/3 in. CCD digital camera has recently been
incorporated into the hardware configuration
onfigurations.
With the added features of the CAM module,

he IA subsystem now performs unsupervised
etection, imaging, and storage of candidate
ymphocytes and management of gold-standard
atabases. The process begins with the system
erforming a pilot scan of the specimen at
ow resolution. The output of that operation is
n image map, which is subsequently filtered
n L∗u∗v∗ color space to detect leukocytes
hile spatial filtering is applied to eliminate
on-cellular artifacts. During the course of the
canning and filtering process, the exact stage
oordinates for each candidate cell are extracted
nd subsequently serve to direct the robotic scope
o systematically image each candidate cell at
igh resolution while simultaneously segmenting
he image and generating the corresponding image
etrics. A second level of filtering, called the Lym-
hGate, is implemented to reject candidate cells
hose feature profiles are inconsistent with that of
lymphocyte. The remaining imaged lymphocytes
nd their corresponding image-based feature met-
ics are indexed into the PathMiner ground-truth
atabase. In the current stage of development a
ertified pathologist subsequently reviews all cells
hat have been selected by the system prior to their
ecoming integrated with the core ground-truth
atabase for quality control. Technical highlights of
he entire procedure are detailed in the following
ections.
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3.1.2.1. Sampling strategy
Scanning sessions may be performed on the entire
specimen, but are more typically applied to
specific subregions as directed by operators who
may view the slide locally or from remote sites.
Since peripheral blood smear specimens have non-
uniform morphologic distributions, scanning areas
are usually specified at appropriate body-to-tail
regions of the smear. There also exists an option
to select multiple regions within a given specimen.

3.1.2.2. Unsupervised specimen scanning and
cell detection in L∗u∗v∗ color space
Pilot scans may be initiated using objective lenses
specified by local or remote users. The system
automatically performs a quick auto-focus opera-
tion, which was developed based upon Shannon’s
entropy [44] in order to determine the optimal focal
plane for the scan. Options also exist for users to
manually focus the system. Upon receiving these
commands, the CAM module computes appropriate
step sizes, and systematically images the required
number of frames in a raster pattern while stitching
slightly overlapped frames into one seamless map
image. During the scanning procedure, the CAM
m
i

to monitor the scanning and stitching process. A
default scan of five rows and six columns using a
10× objective covers approximately a 3mm× 3mm
region of a specimen, and requires one to two
minutes for processing and transmission to a remote
user utilizing a fractional T1 network connection.

A color-filtering module has been coupled
with connected-component analysis algorithms in
order to enable the system to automatically
identify leukocytes throughout the map image. The
algorithms were tested on digitized, peripheral
blood smears stained with Wright Giemsa stain
wherein red blood cells stain pink and the nuclei
of leukocytes, including lymphocytes, neutrophils,
monocytes, etc. stain in shades of blue to purple.

The algorithms begin by mapping r, g, b intensity
values within the image into the L∗u∗v∗ color
space which was introduced by Commission Inter-
nationale de l’Eclairage (CIE) in 1976 [45]. L∗u∗v∗
has become a widely used color space because it
closely relates to representation in human color
perception, in which the L∗ dimension corresponds
to the luminance and the u∗v∗ dimensions relate
to chrominance. The color filtering module subse-
quently performs a polar transformation [46] on the
o ∗ ∗
c

F
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odule transmits a scaled down version of frame
mages to the remote user, enabling that individual
ig. 2 L∗hC∗-based color filter training interface. Either th
eft) can be used to generate appropriate L∗hC∗ boundaries.
imensional plot of the three-dimensional color space (upper
ower-right quarter of the graphical interface.
utput of these operations, resulting in L huvCuv

olor representation where huv and C∗
uv are
e entire field or a subregion of the map image (upper-
Graphical boxes are shown in three corresponding two-
-right), with the subsequent filtering result shown in the
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computed as

C∗
uv = [(u∗)2 + (v∗)2]

1/2

huv = arctan
(

v∗

u∗

)
(11)

The graphical interface of the system provides
a heads-up display of three subplots of the
L∗hC∗ color space and allows users to establish
color bounds by dragging a graphical rectangle
to delineate the desired color range (Fig. 2).
Color bounds were stable across sub-regions within
specimens, and with minor, if any, modifications
were applicable across other specimens that had
been similarly prepared and stained.

3.1.2.3. Automatic imaging and candidate
lymphocyte archiving
The CAM module maps results from the color-
filtering operations into exact microscope stage
locations for each candidate leukocyte, and directs
the robotic scope to systematically image those
cells at high magnification. Imaged leukocytes
are automatically cropped and transmitted to
the client, which systematically segments each

cropped image, using a non-parametric clustering
algorithm [6,46], while extracting color, shape,
texture and area metrics for each cell’s nucleus.

Although lymphocytes may prevail in malignant
cases, they normally constitute no more than
about 10—15% of the population of leukocytes
in peripheral blood. A rejection filter, called the
LymphGate, was developed to prevent cells other
than lymphocytes from entering the database. The
rejection filter is based on cell area and roundness,
which is computed as

roundness = 1
eccentricity

= perimeter2

4�area
(12)

Cells that fall outside of empirically derived limits
are rejected.

3.1.3. Image archiving and database
management

The PathMiner database was designed to archive
biomedical images in support of CBIR studies. The
database was organized using five fundamental
entities: study, category, sample, image, and
image-element. Each study is linked to a specific
Fig. 3 Organization of the ground-truth PathMiner database
The major entities are highlighted in gray while auxiliary tab
more specification.
showing the main tables and representative table fields.
les are rendered in black and white. Please see text for
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set of auxiliary data, image formats, image
elements, image metrics, classifiers, and retrieval
methods. For each study, there may be several
categories or classes in which each specific category
corresponds to a particular disorder or stage of
disease. Each entry in the sample entity refers to an
actual physical specimen and its correlated clinical
data that is stored in auxiliary data tables, e.g., cell
surface protein expression profiles and molecular
studies. The image entity houses information
including the image name, a link to the image file,
as well as the location of the robotic microscope
stage at the time of acquisition. Additional
information pertaining to equipment configurations
as well as the microscopic magnification is stored
in an auxiliary table as shown in Fig. 3. The
image-element refers to region(s) or object(s) of
interest within a given image. In the application
reported in this paper, the image-elements are the
individual lymphocytes. Each image may contain
multiple image elements, and each element need
not necessarily be classified into the same category,
e.g., there may be normal lymphocytes present
in malignant lymphoma samples. The constituent
entities of the database were designed to be
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Each digital report includes the diagnosis and
a brief description of the specimen as well as
the gated cell percentage and six possible levels
of fluorescence intensity for each protein marker
within each cell population. To protect patient
privacy, a database index number, which cannot be
traced back to patient identity, is given to each
report so that while patient identity is hidden from
users, the correlated protein and/or molecular
characteristics of each case can be readily located
and retrieved. This interface is actively being
utilized by individuals at two institutions (UPenn
and UMDNJ) to dynamically expand the ground-
truth databases.

A Perl-based program is under development to
automatically process flat-ASCII versions of the
correlated pathology report by collecting salient
fields (diagnosis, immunophenotype, molecular
diagnosis, cytochemistry results) while omitting all
patient identifiers (Social Security Number, Medical
Record Number, Case Accession Number, Address,
Phone Number, etc.). The data and identifiers will
be developed to meet all HIPAA requirements for
sharing data anonymized for research[47].
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eneralizable, modular, and portable thus providing
he underlying structure to support a wide range of
maging applications.
The graphical interface for the database pro-

ides the means for conducting routine administra-
ive tasks such as creating accounts and assigning
rivileges to users. The PathMiner database
nterface can be used to populate and manage
oth local and remote databases. All users have
ermission to search, index, and integrate any
atabases that reside on their local computer, but
uch entries do not affect the contents of the
round-truth databases.

.1.4. Linking lymphocyte images to their
olecular characteristics

n addition to archiving the digitized specimen and
ts corresponding spatial and spectral profiles, the
athMiner system incorporates correlated clinical
nformation into the database using customizable
uxiliary data tables, thus providing a rich resource
or investigative research. Specifically designed
or this hematology application, a graphical user
nterface has been developed to enable privileged
sers to enter and retrieve flow cytometry reports
immunophenotype profiles) to and from the
atabase. This information, along with the corre-
ponding image features, can then be statistically
valuated for patterns and inter-relationships.
. Results

.1. Classification optimization

o validate the content-based image retrieval
ethods described in Section 2, two-fold cross
alidation was performed on a dataset composed
f 202 normal, 265 MCL, 223 CLL, and 239 FCC
ymphocyte images.
The area feature measurement was the first to

e explored in our experiments. Since the area
easurement is one-dimensional, histograms of the
ntire mixed test set of cells as well as that
f each individual cell class can be visualized as
hown in Fig. 4. The overall histogram is bimodal
ecause the MCL cells from the test set were
arger than the other three classes. The profiles for
ormal (benign) cells and those for the FCC class
xhibited significant overlap, and thus classification
sing area feature alone would not be optimal.
he bandwidth estimation for each class of cells
as computed as in (7) above, and was displayed
n Fig. 4 as a short bar above the mode area.
mprovements in the classification performance
sing area feature alone are plotted in Fig. 7.
To test the RSAR method, experiments were

rst conducted to determine the impact of varying
ernel sizes (3× 3, 5× 5, 7× 7, and 9× 9), while
lternating between two different neighborhood
efinitions (symmetric and non-symmetric). During
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Fig. 4 Area histogram of the overall dataset and of each
class, showing the size of the estimated bandwidth for
each class as bars.

the course of these experiments, an optimized
bandwidth justifier, t, was chosen to maximize
classification performance.

Fig. 5a shows that by fusing feature mea-
surements for texture and area, classification
performance consistently improved from searching
with texture feature alone. These experiments
further demonstrated that while smaller window
sizes tended to improve the performance when
texturemetrics were used alone, the rate of correct

classification was further improved when a larger
kernel window was utilized in conjunction with the
fusion of area and texture metrics. A somewhat
unexpected result of these experiments was
that the symmetric neighborhood provided similar
performance to that of the non-symmetric neigh-
borhood in spite of the reduced dimensionality.

The bandwidth justifier, t, exhibited a non-
dismissible effect on classification performance;
the effect is likely to relate to the singularity
of the covariance matrix. Although a method for
reliably pre-determining its value has not yet been
developed, the optimized t values, as shown in
Fig. 5b, demonstrated that it is possibly related
to dimensionality and level of singularity of the
texture descriptor.

In an effort to further reduce the dimension-
ality of the feature space while simultaneously
maintaining classification performance, additional
experiments were conducted using subdimensions
of the symmetric neighborhood in conjunction with
the optimized t values, which had been previously
computed. From Fig. 6 it is evident that while
removing the residual dimension does not influ-
ence the performance, omission of the intersect
d
n
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i
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on o
(b)
Fig. 5 Classification using RSAR texture feature and fusi
using different window size and neighborhood settings.
optimized to maximize fusion classification performance.
imension has a profound effect. Therefore, the
ewly developed texture descriptor has a minimum
imensionality of 5, rather than the 15-dimensional
ulti-resolution SAR descriptor used in the previous
eneration of algorithms of the IGDS system.
Fig. 7 compares classification performance in

he original and current improved IGDS system
ased on area, texture feature alone and fusion of
oth features. It is evident that the new algorithms
mproved classification significantly in all three
ategories using the stringent two-fold cross
alidation. Two major factors contributed to the
ver 30% improvement in texture discrimination.

f RSAR texture with area. (a) Classification performance
For each neighborhood and window size, t value was



Image mining for investigative pathology using optimized feature extraction and data fusion 69

Fig. 6 Analysis of classification performance by further
reducing dimensions using symmetric RSAR neighbor-
hoods. Dimensionalities of the three situations analyzed
are six (the four RSAR parameters �, the intersect �,
and the residuals ε); five (� and �); four (� only). Both
classification results using the texture feature as well as
its fusion with area are shown.

Fig. 7 Comparison of classification rate using the
original IGDS algorithm and the current system based on
two-fold cross validation. Classification results based on
area feature alone, texture feature alone, and fusion
of texture and area are shown. Please see text for an
explanation.

First, the RSAR method was more robust in texture
descriptor estimation. Second, by using a carefully
selected single-resolution neighborhood instead
of the multi-resolution approach we reduced
dimensionality of the texture descriptor from 15 to
5. By combining the area and texture feature of the
lymphocyte nuclei using probability density-based
data fusion, the overall correct classification rate
for the 929 cells improved by 15%.

4.2. The LymphGate

To test feasibility of the LymphGate, the following
experiment was set up to compare its discrimina-
tion results with human classification. Candidate

leukocytes were extracted from a 5× 6 frame
pilot scan (area of approximately 3mm× 3mm)
of peripheral blood smears from one benign case
and one MCL case. Due to high white cell count
in the MCL case, only the first 250 out of
over 1000 candidate leukocytes were imaged and
used for these experiments. Area and roundness
features of these cells were plotted in Fig. 8,
with the LymphGate, which was determined from
empirical data, outlined by dashed-lines. Cells
that fell within the LymphGate were considered
candidate lymphocytes and were submitted to
the subsequent steps of IA. Afterwards, a human
observer was asked to examine the imaged cells
and provide independent classification of each cell
image into one of the three groups: lymphocyte,
other leukocyte, or non-cellular matter, which
includes disintegrated leukocytes, large platelets,
and specimen artifacts. The experiment results
were plotted in Fig. 8. Please note that data
from some images from the experiment were not
included in Fig. 8 for one the following two reasons:
the image contains specimen artifacts instead of
a cell and hence the segmenter failed to return a
valid shape; or the roundness value is larger than
o
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ne, which implied holes in the segmented shape,
phenomenon specific to neutrophils.
Among the 196 candidate cells extracted

rom the normal specimen, 40 were classified
s lymphocytes by the human observer; all of
hem, along with 9 cells from other categories,
assed the LymphGate and were entered into the
atabase. From the MCL specimen, 201 of the 203
ymphocytes classified by human observer passed
he LymphGate. In the other 15 cells that also
assed the LymphGate, 13 were classified by human
bserver as non-cellular matter. They were mostly
isintegrated lymphocyte nuclei and thus still bore
orphology of lymphocytes. The two lymphocytes
hat did not pass the LymphGate displayed atypical
orphology. In summary, the LymphGate had an
verall sensitivity of 99% and specificity of 85% in
ur feasibility study.
Cell segmentation and feature extraction pro-

essing are completely unsupervised. A heads-up
isplay of the output of each step can be observed
t the client graphical interface throughout the
ourse of analysis. As an added quality control
easure, each indexed candidate lymphocyte is
eviewed by a certified hematopathologist prior to
ts becoming part of the gold-standard database.
his is detailed in the next section.
The custom-shaped LymphGatewas derived from

mpirical studies rather than generating it directly
rom known statistical methods for two reasons.
irst, we were trying to distinguish lymphocytes
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Fig. 8 Comparison of the LymphGate and human classification results in order to validate feasibility of utilizing the
LymphGate in discriminating lymphocytes from candidate cell images. Different color and shape of the markers indicate
human classification result for each cell image. The LymphGate used in this experiment was derived from empirical
data and shown in this illustration by the dashed lines. Cell images that fell inside the LymphGate were considered
candidate lymphocytes and were subject to subsequent steps of IA.

from non-lymphocytes, which themselves are
composed of several different cell groups. As a
result, the distribution of the two-dimensional
data, area, and roundness (as shown in Fig. 8), does
not follow well-known linear or quadratic statistical
models. Second, the goal was to achieve maximal
sensitivity while maintaining a high specificity; this
adds yet another level of complexity if the problem
was to be adequately addressed with conventional
statistical models.

5. Discussion and future directions

The chief objective of the PathMiner project
was to expand upon the progress, which had
been achieved utilizing the first generation IGDS
prototype, and establish a large-scale, web-based
resource, which could provide reliable decision
support for individuals evaluating ambiguous cases
in hematopathology. Two approaches were utilized
in an attempt to attain this goal. One was to
implement the IA system, which facilitates popu-
lating the ground-truth database by unsupervised
scanning and imaging the specimens. The other was

flow reports. In the current stage of development
the imaged cells are reviewed by a certified
hematopathologist before they become part of
the gold-standard databases. Technical highlights
of the IA system include the CAM module,
color filter, lymphocyte filter, and the image
database.

Although our IGDS subsystem was designed as a
diagnostic tool, it would have been inappropriate
if we had used the IGDS algorithms both for
creating the ground-truth database and for testing
performance. As a result, a different strategy was
used in the IA subsystem for selective cell archiving.

The CAM module plays an important part
in the IA system by providing the machine
equivalent of the ‘‘hand—eye coordination’’ that is
normally required to control a robotic system. The
CAM module automatically compensates for par-
centering and par-focal errors between objective
lenses during the pilot scan, thereby providing ac-
curate location of leukocytes for subsequent high-
resolution imaging. The color filter and lymphocyte
filter allow the IA system to selectively index
lymphocytes from peripheral blood specimens. Al-
though it is not impossible to refine the filters so as
t
t
c
q
n
a
o

to refine the CBIR algorithms to further improve
performance and robustness.

The IA subsystem was shown to automatically
image, analyze, and archive hematopathology
specimens while populating gold-standard
databases with resulting image metrics. The
IA also provides the means for entering correlated
o eliminate the small number of other leukocytes
hat yet remains in the candidate cell entries, these
ells can easily be picked out by pathologists in the
uality control stage of processing and therefore do
ot affect database integrity. The above activities
re coordinated by the IA subsystem in order to
perate in unsupervised mode while automatically
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identifying regions within the specimen, capturing
high-resolution images of lymphocytes. The overall
advantage to utilizing the CAM module is that it
significantly reduces the time and effort required
for pathologists to populate and manage the gold-
standard database.

The PathMiner system provides clinical decision
support utilizing a database of cells displaying
representative morphology. However, even in
confirmed cancer cases, only part of the lymphoid
population display typical molecular signatures and
morphology for the disease. As a result, the design
goal for the IA subsystem at this stage of the
project was to present all candidate lymphocytes
to pathologists, who would review the cells and
include the appropriate ones into the database.

The CBIR algorithms of the IGDS subsystem have
undergone major modifications during the course
of the PathMiner project in order to improve
their performance and robustness. Kernel-based
probability density estimation was used to combine
texture and area features or image retrieval.
Compared to the MRSAR method used in previous
generation of algorithms used in the IGDS, the
newly developed RSAR approach was proven to
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