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Abstract. Automatic myocardial wall motion tracking in ultrasound images is an
important step in analysis of the heart function. Existing methods for Myocardial
Wall Tracking are not robust to artifacts induced by signal dropout, significant
appearance or gain control changes. We present a unified framework for tracking
the myocardium wall motion in real time with uncertainty handling and robust in-
formation fusion. Our method is robust in two aspects, firstly robust information
fusion is used for combining matching results from multiple appearance models
and secondly fusion is performed in the shape space to combine information from
measurement and prior knowledge and models. Our approach fully exploits un-
certainties from the measurement, shape priors, motion dynamics, and matching
process based on multiple appearance models. Experiments illustrate the advan-
tages of our approach validating the theory and showing the potential of very
accurate wall motion measurements.

1 Introduction
Accurate analysis of the myocardial wall motion of the left ventricle is crucial for the
evaluation of the heart function. This task is difficult due to the fast motion of the heart
muscle and respiratory interferences. It is even worse when ultrasound image sequences
are used since ultrasound is the noisiest among common medical image modalities such
as MRI or CT. Figure 1 illustrates the difficulties of the tracking task due to signal drop-
out, poor signal to noise ratio or significant appearance changes.

Several methods have been proposed for myocardial wall tracking. Model-based
deformable templates [1, 2], Markov random fields [3], optical flow methods [4–6], or
combinations of above, have been applied for tracking left ventricle (LV) from 2-D
image sequences. Jacob et al. provided a brief recent review in [7]. Other related work
focuses on the tracking, segmentation, or registration in 3D, 2D+T (spatial + time) or
4-D space [8], [9], [10].

One of the main problems of visual tracking is to maintain a representation of target
appearance that is robust enough to cope with inherent changes due to target movement
and/or imaging device movement. Methods based on template matching have to adapt
the model template in order to successfully track the target. Without adaptation, track-
ing is reliable only over short periods of time when the appearance does not change



Fig. 1. Echocardiography images with area of acoustic drop-out, low signal to noise ratio and
significant appearance changes. Local wall motion estimation has covariances (depicted by the
solid ellipses) that reflect heteroscedastic noise.

significantly. However, in most applications, for long time periods the target appear-
ance undergoes considerable changes in structure. When the model is adapted to the
previous frame accumulated motion error and rapid visual changes make the model
to drift away from the target. Tracking performance can be improved by maintaining
a statistical representation of the model. Using only a normal distribution, where the
mean represents the most likely template, will however, not capture the full range of the
appearance variability.

It is a common practice to impose model constraints in a shape tracking framework.
In most cases, a subspace model is suitable for shape tracking, since the number of
modes capturing the major shape variations is limited and usually much smaller than
the original number of feature components used to describe the shape. A straightforward
treatment is to project tracked shapes into a PCA subspace [1]. However, this approach
cannot take advantage of the measurement uncertainty and is therefore not complete:
In most real-world scenarios, measurement noise is heteroscedastic in nature (i.e., both
anisotropic and inhomogeneous). Alternatively, one could directly incorporate a PCA
shape space constraint into a Kalman filter-based tracker. In [11, 12] it is suggested
to set the system noise covariance matrix to be the covariance of a PCA shape model.
However it does not provide a systematic and complete fusion of the model information
because, for example, the model mean is discarded and it mixes the uncertainty from
system dynamics with the uncertainty from the statistical shape constraint.

In this paper we introduce a unified framework forfusing motion estimates from
multiple appearance modelsandfusing a subspace shape model with the system dynam-
ics and measurements with heteroscedastic noise. The appearance variability is mod-
eled by maintaining several models over time. This amounts for a nonparametric rep-
resentation of the probability density function that characterizes the object appearance.
Tracking is performed by obtaining independently from each model a motion estimate
and its uncertainty through optical flow. A recently proposed robust fusion technique
[13] is used to compute the final estimate for each component. The method, named
Variable-Bandwidth Density-based Fusion (VBDF), manages the multiple data sources
and outliers in the motion estimates. To obtain the final shape estimate we specifically
address the issue of heteroscedastic measurement noise and its influence during the
fusion with other information sources. When measurement noise is anisotropic and in-
homogeneous, joint fusion of all information sources becomes critical for achieving
superior performance. In this paper we demonstrate the advantages of the proposed
framework for ultrasound heart sequences.
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Fig. 2. The block diagram of the robust tracker with the measurement and filtering processes.

2 Multi-model Tracker with Robust Information Fusion

The diagram of the proposed robust tracking is illustrated in Figure 2. Our approach is
robust in two aspects: in themeasurement process, VBDF fusion is used for combining
matching results from multiple appearance models and in thefiltering process, fusion is
performed in the shape space to combine information from measurement, prior knowl-
edge and models while taking advantage of the heteroscedastic nature of the noise.

To model the changes during tracking we propose to maintain several exemplars of
the object appearance over time which is equivalent to a nonparametric representation of
the appearance distribution. Figure 2 illustrates theappearance models, i.e. the current
exemplars in the model set, each having associated a set of overlapping components.
Throughout this paper, we represent shapes by control or landmark points (compo-
nents). These points are fitted by splines before shown to the user. A component-based
approach is more robust that a global representation, being less sensitive to structural
changes thus being able to deal with nonrigid shape deformations.

Each component is processed independently, its location and covariance matrix is
estimated in the current image with respect to all of the model templates. For exam-
ple, one of the components is illustrated by the rectangle in Figure 2 and its location
and uncertainty with respect to each model is shown in the motion estimation stage.
The VBDF robust fusion procedure is applied to determine the most dominant motion
(mode) with the associated uncertainty.

The location of the components in the current frame is further adapted by imposing
subspace shape constraints using pre-trainedshape models. Robust shape tracking is
achieved by optimally resolving uncertainties from the system dynamics, heteroscedas-
tic measurements noise and subspace shape model. By using the estimated confidence
in each component location reliable components contribute more to the global shape
motion estimation. The current frame is added to the model set if the residual error to
the reference appearances is relatively low.



3 Measurement Process
Consider that we haven modelsM0, M1, . . . , Mn. For each image we maintainc com-
ponents with their location denoted byxij , i = 1 . . . n, j = 1 . . . c. When a new image
is available we estimate the location and the uncertainty for each component and for
each model. We adopt for this step the robust optical flow technique proposed in [13]
which is also an application of the VBDF technique. The result is the motion estimate
x̂ij for each component and its uncertaintyĈij . Thusx̂ij represents the location esti-
mate of componentj with respect to modeli. The scale of the covariance matrix is also
estimated from the matching residual errors.

The VDBF estimator is based on nonparametric density estimation with adaptive
kernel bandwidths [13]. The choice of the VDBF estimator is motivated by its good
performance in the presence of outliers in the input data when compared to previous
methods such as Covariance Intersection or BLUE estimation assuming single source,
statistically independent data. The VBDF estimator is defined as thelocation of the
most significant modeof a density function. The mode computation is based on the
variable-bandwidth mean shift technique in a multiscale optimization framework.

Let x̂i ∈ Rd, i = 1 . . . n be the available d-dimensional estimates, each having an
associated uncertainty given by the covariance matrixĈi (we drop the component index
j for now). A bandwidth matrix̂Hi = Ĉi + α2I is associated with each pointx̂i, where
I is the identity matrix and the parameterα determines the scale of the analysis. The
sample point density estimator at locationx̂ is defined by
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1
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Hh represents the harmonic mean of the bandwidth matrices weighted by the data-
dependent weightsωi(x) computed at the current locationx
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Updating iteratively the current location using the mean shift vector yields a hill-
climbing procedure which converges to a stationary point of the underlying density. The
VBDF estimator finds the most important mode by iteratively applying the mean shift
procedure at several scales. It starts from a large scale by choosing the parameterα large
with respect to the spread of the points. In this case the density surface is unimodal and
the determined mode will correspond to the globally densest region. The procedure is
repeated while reducing the value of the parameterα and starting the the mean shift it-
erations from the mode determined at the previous scale. In the final step the bandwidth
matrix associated to each point is equal to the covariance matrix, (Ĥi = Ĉi).
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Fig. 3. Multiple models versus single model. (a) initial contour; (b) 17th contour tracked using a
single appearance model (c) 17th contour tracked using multiple appearance models.

The VBDF estimator is a powerful tool for information fusion with the ability to
deal with multiple source models. This is important for motion estimation as points in
a local neighborhood may exhibit multiple motions. The most significant mode cor-
responds to the most relevant motion. The VBDF robust fusion technique is applied to
determine the most relevant locationx̂j for componentj in the current frame. The mode
tracking across scales results in

x̂j = C(x̂j)
n∑

i=1

ωi(x̂j)Ĉ−1
ij x̂ij and C(x̂j) =

(
n∑

i=1

ωi(x̂j)Ĉ−1
ij

)−1

. (4)

Figure 3 shows the advantage of using multiple appearance models. The initial
frame with the associated contour is shown in Figure 3a. Using a single model yields an
incorrect tracking results (Figure 3b) and the multiple model approach correctly copes
with the appearance changes (Figure 3c).

4 Filtering Process

The analysis is based on vectors formed by concatenating the coordinates of all con-
trol points [7, 1]. A typical tracking framework fuses information from the prediction
defined by a dynamic process and from noisy measurements. For shape tracking addi-
tionalglobalconstraints are necessary to stabilize the overall shape in a feasible range.

Let us now turn our attention to the problem of information fusion with one of the
sources in a subspace. Given two noisy measurements of the samen-dimensional vari-
ablex, each characterized by a multidimensional Gaussian distribution,N (x1, C1) and
N (x2, C2), the maximum likelihood estimate ofx is the point with the minimal sum
of Mahalanobis distances to the two centroids. Now, assume that one of the Gaussians
is in a subspace of dimensionp, e.g.,C2 is singular. With the singular value decom-
position ofC2 = UΛUT , whereU = [u1, u2, . . ., un], with ui’s orthonormal and
Λ = diag{λ1, λ2, . . ., λp, 0, . . ., 0}. The distance to be minimized becomes:

d2 = (Upy − x1)T C−1
1 (Upy − x1) + (Upy − x2)T C+

2 (Upy − x2) (5)

whereUp = [u1,u2, . . .,up] represents the subspace basis andy the value in this sub-
space. Taking derivative with respect toy yields the fusion estimator for the subspace:

y∗ = Cy∗UT
p (C−1

1 x1 + C+
2 x2) where Cy∗ = [UT

p (C−1
1 + C+

2 )Up]−1 . (6)
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Fig. 4. Orthogonal projection versus our proposed fusion approach. (a) expert-drawn contour;
(b) un-constrained flow results; (c) constrained flow using orthogonal projection; (d) contour
obtained by our fusion framework with uncertainty ellipses.

Equivalent expressions can be obtained in the original space:

x∗ = Upy∗ = Cx∗(C−1
1 x1 + C+

2 x2) where Cx∗ = UpCy∗UT
p . (7)

It can be shown thatCx∗ andCy∗ are the covariance matrices forx∗ andy∗ (see [14]).
To complete the shape tracking method, the subspace fusion with shape models

is integrated into a Kalman filtering framework [15]. Kalman filtering with subspace
constraints provides a unified fusion of the system dynamics, a subspace model, and
measurement noise information. For details please see [14].

For endocardium tracking what we theoretically need isthe statistical shape model
of the current heartinstead of a generic heart. Therefore we apply a strongly-adapted-
PCA (SA-PCA) model by assuming that the PCA model and the initialized contour
jointly represent the variations of the current case [14]. With SA-PCA, our framework
now incorporates four information sources: the system dynamic, measurement, sub-
space model, and the initial contour.

An example is shown in Figure 4 for comparison between our approach and or-
thogonal projection. The fusion will not correct the error completely, but note that this
correction step is accumulative so that the overall effect at a later frame in a long se-
quence can be very significant.

5 Experiments

In this section we will apply and evaluate the new framework to track heart contours
using very noisy echocardiography data. The tracker was implemented in C++ and is
running at about 20 frames per second on a single 2GHz Pentium 4 PC. Our data were
selected by a cardiologist to represent normals as well as various types of cardiomy-
opathies, with sequences varying in length from 18 frames to 90 frames. Both training
and test data were traced by experts, and confirmed by one cardiologist. We used both
apical two- or four-chamber views (open contour with 17 control points) and parasternal
short axis views (closed contour with 18 control points) for training and testing. PCA
is performed and the original dimensionality of 34 and 36 is reduced to 7 and 8, respec-
tively. For the appearance models we maintain 20 templates to capture the appearance
variability. For systematic evaluation, we use a set of 32 echocardiogram sequences
outside of the training set for testing, with 18 parasternal short-axis views and 14 apical
two- or four-chamber views, all with expert-annotated ground-truth contours.



Fig. 5. Two tracking examples in rows, with 5 snapshots per sequence.
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Fig. 6. Mean distances ((a) MSSDi, (b) MADi) between tracked points and the ground truth.

Figure 5 shows snapshots from two tracked sequences. Notice that the endocardium
is not always on the strongest edge. Sometimes it manifests itself only by a faint line;
sometimes it is completely invisible or buried in heavy noise; sometimes it will cut
through the root of the papillary muscles where no edge is present. To compare per-
formance of different methods, we used the Mean Sum of Squared Distance (MSSD)
(cf. [16]) and a Mean Absolute Distance (MAD) (cf. [17]). Our proposed method (“Pro-
posed”) is compared with a tracking algorithm without shape constraint (“Flow”) or
with the same tracker with orthogonal PCA shape space constraints (“FlowShapeS-
pace”). Figure 6 and Table 1 show the comparison using the two distance measures.
Our proposed method (“Proposed”) significantly outperforms others, with lower aver-
age distances and lower standard deviations for such distances.

It should be noted that our results are not indicative forborder localizationaccu-
racies, but rather formotion trackingperformances given an initial contour. We have
set our goal to track control points on the endocardium, with anisotropic confidence
estimated at each point at any given time step by using multiple appearance models,
and exploit this information when consulting a prior shape model as a constraint. Our
framework is general and can be applied to other modalities. Future potential applica-
tions include tracking in MR, perfusion, and extensions to tracking in 3-D or 4-D.
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Table 1.Error analysis (“Most Difficult Cases” are the last three cases in Figure 6a).

All Cases Most Difficult Cases
Methods MSSDσ̄MSSD MAD σ̄MAD MSSDσ̄MSSD MAD σ̄MAD

Flow 38.1 82.9 4.3 3.6 147.9 325.0 8.8 8.2
FlowShapeSpace24.7 35.5 3.8 2.4 106.0 181.2 7.9 6.3
Proposed 8.3 14.3 1.7 1.6 25.8 34.8 4.1 2.8
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