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Abstract. One of the most difficult aspects of visual object tracking is the han-
dling of occlusions and target appearance changes due to variations in illumi-
nation and viewing direction. To address these challenges we introduce a novel
tracking technique that relies on component-based target representations and on
robust fusion to integrate model information across frames. More specifically,
we maintain a set of component-based models of the target, acquired at differ-
ent time instances, and combine robustly the estimated motion suggested by each
component to determine the next position of the target. In this paper we allow
the target to undergo similarity transformations, although the framework is gen-
eral enough to be applied to more complex ones. We pay particular attention to
uncertainty handling and propagation, for component motion estimation, robust
fusion across time and estimation of the similarity transform. The theory is tested
on very difficult real tracking scenarios with promising results.

1 Introduction

One of the problems of visual tracking of objects is to maintain a representation of
target appearance that has to be robust enough to cope with inherent changes due to
target movement and/or camera movement. Methods based on template matching have
to adapt the model template in order to successfully track the target. Without adapta-
tion, tracking is reliable only over short periods of time when the appearance does not
change significantly. However, in most applications, for long time periods the target
appearance undergoes considerable changes in structure due to change of viewpoint,
illumination or it can be occluded. Methods based on motion tracking [1], [2], where
the model is adapted to the previous frame, can deal with such appearance changes.
However accumulated motion error and rapid visual changes make the model to drift
away from the tracked target. Tracking performance can be improved by imposing ob-
ject specific subspace constraints [3], [4] or maintaining a statistical representation of
the model [5], [6], [7]. This representation can be determined a priori or computed on
line. The appearance variability can be modeled as a probability distribution function
which ideally is learned on line. Previous work approximated this p.d.f. as a normal
distribution in which case the mean represent the most likely model template. Updating



the distribution parameters can be done using EM based algorithms. Also adaptive mix-
ture models have been proposed to cope with outliers and sudden appearance changes
[3].

We propose a method where the appearance variability is simply modeled by main-
taining several models over time. This amounts for a nhonparametric representation of
the probability density function that characterizes the object appearance. We also adopt
a component based approach and divide the target into several regions which are pro-
cessed separately. Tracking is performed by obtaining independently from each model
a motion estimate and its uncertainty through optical flow. A recently proposed robust
fusion technique [8] is used to compute the final estimate for each component. The
method, nhamed Variable-Bandwidth Density-based Fusion (VBDF), computes the lo-
cation of the most significant mode of the displacements density function while taking
into account their uncertainty. The VBDF method manages the multiple data sources
and outliers in the motion estimates. In this framework, occlusions are naturally han-
dled through the estimate uncertainty for large residual errors. The alignment error is
used to compute the scale of the covariance matrix of the estimate, therefore reducing
the influence of the unreliable displacements.

The paper is organized as follows. Section 2 contains previous work on appearance
modeling related to our approach. The multi-model component based tracking method
is presented in Section 3. Experiments on real sequences under considerable occlusions
are in Section 4 and we conclude in Section 5.

2 Related Work

An intrinsic characteristic of the vision based tracking is that the appearance of the
tracking target and the background are inevitably changing, albeit gradually. Since the
general invariant features for robust tracking are hard to find, most of the current meth-
ods need to handle the appearance variation of the tracking target and/or background.
Every tracking scheme involve a certain representation of the 2D image appearance of
the object, even though this is not mentioned explicitly.

Fleet et al. [5] proposed a generative model containing 3 components: the stable
component, the wandering component, and the occlusion component. The stable com-
ponent identifying the most reliable structure for motion estimation and the wandering
component representing the variation of the appearance are two Gaussian distributions.
The occlusion component accounting for data outliers is uniformly distributed on the
possible intensity level. Using the phase parts of the steerable wavelet coefficients [9]
as feature, this algorithm achieves satisfactory tracking results. It needs a relative long
time for the stable component to gain confidence in appearance estimation. Since the
stable component, as the tracking template, is modeled as an unimodal Gaussian, it
needs to restart from time to time to accommodate the natural multimodal case.

Based on the hypothesis that most promising features for tracking are the same fea-
tures that best discriminate between object and background classes, Collins et al. [10]
empirically evaluate all candidate features to estimate the distributions and a new im-
age composed of the log likelihood ratio of these distributions is used to track. However



some salient feature that distinguish the tracking object from background may change
drastically which imperils the validity of the hypothesis used in [10].

Using Earth Movers Distance as feature, Sharma et al. [11] present a complete ob-
ject appearance learning approach, dealing with 3D surfaces. The problem is modeled
by a continuous Markov Random Field with clique potentials defined as energy func-
tion. This approach safely maps and maintains object appearance on the 3D model sur-
face. An online adapted appearance model is proposed in [12] using a Markov Random
Field of the color distributions over a 3D model. Appearance driven cue confidences
are used to balance the contribution for model update.

3 Multi-Model Component-Based Tracker

Object tracking challenges due to occlusions and appearance variations are handled in
our framework through a multi-model component-based approach. Maintaining several
representatives for the 2D appearance model does not restrict it to a unimodal distribu-
tion and the VBDF fusion mechanism robustly integrates multiple estimates to deter-
mine the most dominant motion for each component. These key ideas are introduced in
Subsection 3.1 followed by the VBDF algorithm in Subsection 3.2. Details about our
method and implementation issues are in Subsection 3.3.

3.1 Main Ideas

The steps of our proposed method are outlined in Figure 1. To model the changes dur-
ing tracking we propose to maintain several exemplars of the object appearance over
time. This is in contrast to the approach adopted in [5] where the stable appearance
component is modeled using a Gaussian distribution for each pixel. Maintaining ex-
plicitly the intensities is equivalent to a nonparametric representation of the appearance
distribution.

The top row in Figure 1 illustrates the current exemplars in the model set, each
having associated a set of overlapping components. A component-based approach is
more robust that a global representation, being less sensitive to illumination changes
and pose. Another advantage is that partial occlusion can be handled at the component
level by analyzing the matching likelihood.

Each component is processed independently, its location and covariance matrix is
estimated in the current image with respect to all of the model templates. For example,
one of the components is illustrated by the gray rectangle in Figure 1 and its location
and uncertainty with respect to each model is showh,j),. The VBDF robust fusion
procedure is applied to determine the most dominant motion (mode) with the associated
uncertainty (Figure 1, center bottom row). Note the variance in the estimated location
of each component due to occlusion or appearance change.

The location of the components in the current frame is further constrained by a
global parametric motion model. We assume a similarity transformation model and its
parameters are estimated using the confidence in each component location. Therefore
the reliable components contribute more to the global motion estimation.
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Fig. 1. The steps of the multi-model component based tracker.

The current frame is added to the model set if the residual error to the reference
appearances is relatively low. The threshold is chosen such that we do not add the
images where the target has significant occlusion. The number of templates in our model
set is fixed, therefore the oldest one is discarded.

3.2 Variable-Bandwidth Density-based Fusion

The VDBF estimator is based on nhonparametric density estimation with adaptive kernel
bandwidths. It was introduced in [8] with an application to robust optical flow compu-
tation. The choice of the VDBF estimator is motivated by its good performance in the
presence of outliers in the input data when compared to previously proposed meth-
ods such afovariance Intersectiofil3] or BLUE estimate assuming single source,
statistically independent data [14]. The robustness with respect to outliers of the VDBF
technique comes from the nonparametric estimation of the initial data distribution while
exploiting its uncertainty. The VBDF estimator is defined as the location of the most sig-
nificant mode of the density function. The mode computation is based on the variable-
bandwidth mean shift technique in a multiscale optimization framework.

Letx; € R% i = 1...n be the available d-dimensional estimates, each having an
associated uncertainty given by the covariance matyixrhe most significant mode of
the their density function is determined iteratively in a multiscale fashion. A bandwidth
matrix H; = C; + «?1 is associated with each poimt, wherel is the identity matrix
and the parametex determines the scale of the analysis. The sample point density



estimator at locatior: is defined by

flz) = o) d/2 Z exp( —D?*(x a:l,Hl)> (1)

whereD represents the Mahalanobis distance betweandx;
D*(zx,z;, H;) = (x — ;) ' H ' (z — x;) 2

The variable bandwidth mean shift vector at locatiors given by
m(z) = Hy(x) Y wi(x)H; 'z — (3)
i=1

whereH,, represents the harmonic mean of the bandwidth matrices weighted by the

data-dependent weights (x)
n —1
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The data dependent weights computed at the current locati@mve the expression

‘Hiﬁexp (—%D2($,wi,Hi))
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and note that they satisfy’" ;| w;(z) = 1.

It can be shown that the density corresponding to the poist m(x) is always
higher or equal to the one corresponding:td herefore iteratively updating the current
location using the mean shift vector yields a hill-climbing procedure which converges
to a stationary point of the underlying density.

The VBDF estimator finds the most important mode by iteratively applying the
adaptive mean shift procedure at several scales. It starts from a large scale by choosing
the parametet large with respect to the spread of the poinisIn this case the den-
sity surface is unimodal therefore the determined mode will correspond to the globally
densest region. The procedure is repeated while reducing the value of the parameter
« and starting the the mean shift iterations from the mode determined at the previous
scale. For the final step the bandwidth matrix associated to each point is equal to the
covariance matrix, i.el; = C;.

The VBDF estimator is a powerful tool for information fusion with the ability to
deal with multiple source models. This is important for motion estimation as points in
a local neighborhood may exhibit multiple motions. The most significant mode corre-
sponds to the most relevant motion.

wi(m) =

()

3.3 Tracking Multiple Component Models

Consider that we have modelsMg, My, ..., M,,. For each image we maintaircom-
ponents with their location denoted by;, i =1...n,j = 1...c. When a new image



is available we estimate the location and the uncertainty for each component and for
each model. This step can be done using several technigques such as ones based on
image correlation, spatial gradient or regularization of spatio-temporal energy. Based
on the image brightness constancy, one of the most popular optical flow techniques has
been developed by Lucas and Kanade [15]. For a small image patch the pixels flow esti-
mates are combined assuming a translational model by solving a weighted least squares
problem. However they neglect the uncertainty of the initial estimates, therefore we
adopt the robust optical flow technique proposed in [8] which is also an application of
the VBDF technique. The result is the motion estimajg for each component and
its uncertainty@ij. Thusz;; represents the location estimate of componjenith re-
spect to model. The scale of the covariance matrix is also estimated from the matching
residual errors. This will increase the size of the covariance matrix when the respective
component is occluded therefore we naturally handle occlusions at the component level.
The VBDF robust fusion technique presented in the previous subsection is applied
to determine the most relevant locatiggpfor component; in the current frame. The
mode tracking across scales results in

&5 = C(&;) Yy wild;)Cy oy
=1

n -1
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with the weightsu; defined as in (5).

Following the location computation of each component, a weighted rectangle fit-
ting is carried out with the weights given by the covariance matrix of the estimates.
We assume that the image patches are related by a similarity trangfdefined by 4
parameters. The similarity transform of the dynamic component locatisncharac-
terized by the following equations.

o= (1) ()

wheret,, t, are the translational parameters and parametrize the 2D rotation and
scaling.

The minimized criterion is the sum of Mahalanobis distances between the reference
Iocationw? and the estimated onés (j!* component location in the current frame).

J = Z (& — T(x5))"Cla;) ™" (z; — T(=])) - (8)

Minimization is done through standard weighted least squares. Note that because
we use the covariance matrix for each component the influence of points with high
uncertainty is reduced.



After the rectangle is fitted to the tracked components, we uniformly resample the
dynamic component candidate inside the rectangle. We assume the relative position of
each component with respect to the rectangle does not change a lot. If the distance of
the resample position and the track position computed by the optical flow of a certain
component is larger than a tolerable threshold, we regard the tracked position as an
outlier and replace it with the resampled point. The current image is added to the model
set if sufficient components have low residual error. The median residual error between
the models and the current frame is compared with a pre-determined thr&ghold

Given a set of models/y, M, ..., M, in which the component has location;;
in frames, our object tracking algorithm can be summarized by the following steps:

1. Given a new image computeﬁ:g) through robust optical flow [8] starting from
:icgf_l), the location estimated in the previous frame;

2. Forj =1...cestimate the Iocatioﬁgf) of componenjy using the VBDF estimator
(Subsection 3.2) resulting in (6);

3. Constrain the component location using the transform computed by minimizing
(8);

4. Add the new appearance to the model set if its median residual error is leg§ that

The proposed multi-template framework can be directly applied in the context of
shape tracking. If the tracked points represent the control points of a shape modeled by
splines, the use of the robust fusion of multiple position estimates increases the reliabil-
ity of the location estimate of the shape. It also results in smaller corrections when the
shape space is limited by learned subspace constraints. If the contour is available, the
model templates used for tracking can be selected online from the model set based on
the distance between shapes.

4 Experiments

The proposed method was applied for object tracking in real videos with significant
clutter and occlusions. We used= 20 model templates and the components are at 5
pixels distance with their numberdetermined by the bounding rectangle. The thresh-
old T}, for a new image to be added to the model set Wyasof the intensity range. The
value was learned from the data such that occlusions are detected.

We successfully tested the method on different image sequences including medical
videos. We present results on only two sequences that illustrate the advantages of our
approach.

The results for tracking a person’s face is presented in Figure 2. This is a very
challenging sequence where the scene has significant clutter with several faces and
multiple occlusions affect the tracked region. Figure 3 shows the median residual error
over time which is used for model update. The peaks in the graph correspond to frames
where the target is completely occluded. As mentioned earlier, the model update occurs
when the error passes the threshbjd= 32 which is the horizontal line in Figure 3.

Figure 4 shows the results of tracking of a human body. The method is able to
cope with the appearance changes such as the arm moving and it is able to recover the



Fig. 2. Face tracking results; the white rectangle represents the target. (a) Frame 0O; (b) Frame 49;
(c) Frame 137; (d) Frame 249; (e) Frame 281; (f) Frame 312; (g) Frame 375; (h) Frame 527.
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Fig. 3. Residual error over time for face tracking sequence.Horizontal line represents the model
update threshold.
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Fig. 5. Residual error over time for human body tracking sequence. Horizontal line represents the
model update threshold.



tracking target after the tree occlusion. Figure 5 plots the residual error over time. The

first peak corresponds to the target being occluded by the tree while toward the end the
error is due to the person turning and its image size becoming smaller with respect to
the fixed component size.

5 Conclusion

This paper introduced an object tracking method based on multiple appearance models
and VBDF-based fusion of estimates. We showed the ability of the proposed approach
to deal with significant occlusions, clutter and appearance changes on real image se-
quences. Although we used image templates as models, our approach is general enough
to integrate information from different model representations such as color distributions
or filter responses. Further work include solving for the global motion through a robust
approach and use of multiple hypothesis for tracking.
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