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Abstract

Reliable estimation of the trifocal tensor is crucial for 3D
reconstruction from uncalibrated cameras. The estimation
process is based on minimizing the geometric distances be-
tween the measurements and the corrected data points, the
underlying nonlinear optimization problembeing most often
solved with the Levenberg-Marquardt (LM) algorithm. We
employ for this task the heteroscedastic errors-in-variables
(HEIV) estimator and take into account both the singular-
ity of the multivariate tensor constraint and the bifurcation
which can appear for noisy data. In comparison to the Gold
Sandard method, the new approach is significantly faster
while having the same performance, and it is less sensitive
to initialization when the data is close to degenerate. Ana-
Iytical expressions for the covariances of the parameter and
corrected image point estimates are available for the HEIV
estimator, and thus the confidence regions of the corrected
measurements can be delineated in the images.

1. Trifocal Tensor

Thetrifocal tensor describesthe intrinsic projective proper-
tiesof agroup of threeimagestaken with uncalibrated cam-
eras. Therole of trifocal tensor in the projective reconstruc-
tion of 3D structures is extensively discussed in the litera-
ture, and we refer to the recent book [5, pp.355-378] for an
excellent treatment of all the relevant topics, and to [16] for
an comprehensive discussion of the involved optimization
methods.

In this paper will focus on the problem of estimating the
trifocal tensor from 3-view point correspondences, i.e., from
thematched images of 3D points. Wewill assumethat all the
correspondences are correct. While the estimation method
presented here can be easily robustified similar to [14], we
concentrate on issues related to the behavior of the estima-
tion process, i.e., on numerical robustness.

Will start by reviewing the geometric relationsneeded in
the sequel. Given three cameras characterized by unknown
projective matrices P, P’, P", theimages of a3D point X
in each view will be denoted =, =, £”. In homogeneous
coordinates ® = [z1, 2, z3]" and similarly for the points
in the other two images. The projective ambiguity allows
to express the cameramatrices as P = [I]0], P’ = [Al€'],
P" = [B|e""], wheree’ and e” arethe projection of thefirst
camera center C in the second and third image (Figure 1).
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Figure 1: Point-point-point correspondence. Definition of
the geometric elements used in the paper.

Thus e’ and e” are the epipoles corresponding to C.

The 3 x 3 x 3 trifocal tensor T' describesa 3D incidence
relation through a trilinearity among related points (lines)
in the three images. The trilinearities can be written for the
point correspondences as

[:B']X (Z iBiTi) [w//]x =033 (1)

where [v] « isthe skew-symmetric matrix such that v x u =
[v]xu, andthe 3 x 3 matrices

T; = a;e" T — e'b;r 2

arethe correlation dices [3] of the trifocal tensor. Note that
T'; depends only on the parameters of the projection matri-
ces P/, P”, and has rank two. It can be shown that only
four of the nine relations captured in (1) are linearly inde-
pendent [5, pp.417-421]. Wewill usethosein the upper left
2 x 2 block in (1).

Theepipolar linesin the second and third view of theim-
age point « in the first view will be defined as

U = [e/]x 2 U = [e//]>< 2" (3)

Multiplying (2) left and right respectively with I'T and 1"
yields due to the vanishing cross products

''ri"=o0. (4)

The relation (4) captures the degeneracy of epipolar line
transfer [5, pp.374-375]. Another important algebraic prop-
erty of the trifocal tensor is that the linear combination
> z;T; has also rank two. The left and right null-vectors
arethe epipolar linesl’ and 1" [5, pp.363-364]

T (Z wsz) = 0;— and (Z :BZT,) U= 0; . (5)



2. Estimation Methods

From (1) it can be seen that the tensor is defined only up to
aconstant, i.e., there are 26 unknown parameters. From ge-
ometric considerations, however, it is easy to prove that the
tensor can have only 18 degrees of freedom (d.f.). Indeed,
thethree camerashave 3 x 11 = 33 parametersfrom which
we must subtract the inherent ambiguitiesintroduced by the
3D projective transformation (15 d.f.).

The additional constraints which have to be satisfied by
the 26 parameters in order to represent a trifocal tensor
are complicated polynomial expressions. Papadopoulo and
Faugeras [12] were the first to obtain 12 such (not inde-
pendent) relations, while the minimal set of 8 conditions
was recently derived by Canterakis[3]. The additional con-
straints being higher degree polynomials they can be im-
posed only after an estimate of the 26 parameters becomes
available through unconstrained minimization. To take into
account the underlying geometry the tensor (1) must be
reparametrized. An often used reparametrization is by the
24 parameters of the projection matrices P’, P" based on
(2), but other possibilities were also investigated [14].

Without loss of generality we can consider that =, =', ="
are affine coordinates, i.e., # = [z, z2,1]T, etc., where
z1,...,z5 arethe measurements in the three images. As-
suming independent normally distributed measurement er-
rors, theoptimal maximum likelihood estimate(MLE) isob-
tained by minimizing

JG:Ed(w,»,:ej)erd(m;,ﬁ;;) +d(z!,27)" (6
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i.e., the sum of squared geometric distances between the
measurements z;, z;, =; and the corrected data points
&5, ] , ] !, the latter obeying the trilinear constraints (1) for
the estimated tensor 7. Note the distinction between the
noisy measurementsand the geometric elements (thetrue or
equivalently the corrected data points). In Section 1  was
a geometric element.

Since the corrected data points must be in correspon-
dence, they are the projections on the three image planes of
an unknown 3D point X . Thus the corrected point coor-
dinates &4, ... , 4 arerational functions of the camera pa-
rameters and the three spatial coordinatesof X . Solving the
nonlinear estimation problem (6) with this parametrization
always yields a geometrically valid tensor. This projective
bundle adjustment procedure is called the “Gold Standard”
methodin [5, pp.385]. Theminimizationis performedusing
the Levenberg-Marquardt (LM) algorithm for the 3n + 24
unknown parameters yielded by » measurements, making
the estimation process very demanding computationally. It
is possible to reduce the computations by implementing a
sparse LM agorithm [5, pp.571-576], but in practice most

often afirst order approximation of (6) is used. The approx-
imation is called the Sampson distance[5, pp.387] sinceit is
based on an old technique proposed for ellipsefitti ng [13].
Define the vector m = [z1, 2o, 2}, 2}, 2, 2] € RS,
The four independent trilinear constraints from (1) can be

rearranged as a homogeneous multivariate expression
f (17,6) = 26 = 0, v

linear in the 27-dimensional vector of the tensor parameters
6. Let the 24-dimensional vector B have as entitiesthe ele-
mentsof the estimated projection matrices P and P Then
(2) can berewritten as 8 = g(B). The4 x 27 matrix Z has
each element a product of some of the corrected point co-
ordinates #1,. .. ,24. Thus, Z = & (i) and let o, (1) be
the k-th row of & (+#2). The constraint (7) can bealso written
as

f(rn, B) = ®(1h)g(B) = 04. ®)

The 6 x 4 Jacobian matrix of the constraint with respect to
the noisy measurements m is defined following [2]

Ofx(m,B) ﬁ)

om;

df(m,B)"
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In the first order approximation of (6) the constraint (8)
is linearized, as will be shown in Section 4. In [14] the
linearization was performed around the measurements m;,
however, wewill show that linearizing around the corrected
data points +72; is more advantageous.

The expression of the Sampson distance is
J = zn:f (mj7ﬁ)T (J.;—lmjj-flmj)+f (mj,ﬁ) (10)
j=1

where Kt stands for the pseudoinverse of the matrix K.
The quantity f (mj,ﬁ) = Zjé is the value of the mul-
tivariate constraint (8) computed for m;, i.e., the algebraic
distance of m; from the variety in R® defined by (8). Note
that 3 appearsalso in the expression of J fm; - TOominimize
the criterion (10) again the LM algorithm is employed [5,
pp.387], or a modification of the Gauss-Newton technique
[14].

The LM based optimization starts from the initial solu-
tion obtained by minimizing the algebraic error

A0]

_ N a2 a A[O]H_
(7] _argmeln;HZJ@H subject to HG =1 (12)

whichisaTotal Least Squares (TLS) problem. Since Z; is
not a linear function in the measurementsthe TL S solution
is biased [8], but the normalization of the measurements|[5,
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Figure 2: Singular constraint. The dimension of the space
spanned by the gradientsis|essthan the number of indepen-
dent equations.

pp.91-93] helps to reduce the effect of the bias. Theinitial

solution is usually not a geometrically valid tensor and 9[0]
is corrected to obey (2) [5, pp.385].

The quality of the initial solution has a strong influence
on the performance of nonlinear optimization methods. The
main contribution of this paper isto propose a different way
to estimate the trifocal tensor by minimizing acost function
similar to the Sampson distance. For “good” data the new
approach has the same performance as the Gold Standard
method (but it is significantly faster), while for “bad” data
it isless sensitive and thus numerically more robust.

3. Onthe Singularity of J ¢,

The 6 x 4 Jacobian matrix (9) computed with 7 and 8,
J ¢ has rank three. The property was already reported
in [14] and explained using differential geometry concepts.
The tensor defines a variety of dimension three in R€ (the
space of the measurements, m) since each point on the va-
riety correspondsuniquely toapointin 3D. Seealso[15] for
adetailed discussion of varietiesin the context of the epipo-
lar constraint.

A constraint having the Jacobian vanishiscalled singular
[6, pp.131-133]. Thecolumnsof J,; arethegradient vec-
tors of the surfaces fi (v2,8) = 0, k = 1,...,4, andthe
singularity implies that the four vectors are linearly depen-
dent. Thisisillustrated in two dimensionsin Figure 2. The
two surfacesaretangent in the point 72 and thetwo gradients
are collinear. The point-point-point correspondence of the
trifocal tensor is not the only case in computer vision when
asingular constraintismet for general (nondegenerate) data.
The conditionsto be satisfied by an essential matrix arealso
singular [6, pp.336-338].

A rigorous algebraic proof of the singularity of (8) is
based on the rel ations between the geometric elementsin the
three views (Figure 1), and provides another interpretation
of the role of degenerate transfers between the views. To
simplify the notations, for the moment will returnto geomet-
ric entities (asin Section 1) and assume that m satisfiesthe
tensor constraint. The Jacobian matrix is singular when a
linear combination of the four columns vanishes, i.e., sums

up to 0. Thisisequivaent to show that alinear combina-
tion of the four elements on arow is zero, using same coef-
ficientsfor all the rows.

Denotethe 3 x 3 matrix on theleft side of (1) as.D(m),
and s = [0,0,1]T. Using s we can select the four indepen-
dent constraints employed in this paper, and thusthe four el-
ementsof thei-th row of the Jacobian matrix arein the upper
left 2 x 2 block of the 3 x 3 matrix

SAGLIP 12)
We prove next that the coefficients of the sought linear com-
bination of the four gradients are products of the compo-
nents of the epipolar linest’, 1" (3). That is

Bm,»

l'T[s]Ia?;T) [s]x" =0 i=1,...,6. (13
Wheni=1,2
D) _ a1, (14)
dm;
and it is easy to verify that
[2"]x [s]x 1" = [2"]x[s]x [e"], 2" = —z3l" . (15)

The geometric meaning of (15) isthat the point " ison the
epipolar linel”. Therefore (13) becomes (4) and vanishes.
Wheni =3
dD(m)
Bmg

1
] o

which makes (13) vanish because of (15) and (5). The cases
of 1 = 4,5, 6 can be proved the same way.

The Jacobian matrix thus is ill-conditioned near the so-
lution. This might be the cause why the LM agorithm
uses more steepest-descent than Gauss-Newton steps, aswe
have observed experimentally when minimizing the Samp-
son distance (10). Preferencefor theformer significantly in-
creased the time to convergence.

4. Numerically Robust Estimation

The heteroscedastic errors-in-variables (HEIV) model is
the most general representation of the measurements, each
data point m;, 7 = 1,...,n, having independent er-
rors with different covariance matrices, i.e., ém; ~
GI(0, 02Cp,,), Where Cy,; is known and the common
noise variance o2 is to be estimated from the data. An esti-
mator for multivariate constraints and heteroscedastic noise
was developed in [9]. The technique is applied here to the
trifocal tensor estimation taking into account the singularity
of the problem. Asthe experimental results will prove, the
HEIV estimator is significantly faster than the Levenberg-
Marquardt algorithm and has superior performancefor close
to degenerate data.



4.1. HEIV Estimator

The availability of the first two moments of the error dis-
tribution alows the definition of a minimization criterion
based on squared Mahalanobis distances

22

subject to (8). Note that for normally distributed errors (17)
isthe MLE criterion, and if the errorsin the three views are
uncorrelateditisidentical to (6) under the Mahalanobis met-
ric.

The minimization of (17) can be carried out by introduc-
ing the Lagrange multipliersn,,

i =) O (mj — ), (17)

1 n . . n
Tv=73 Y (my—mh)TCY (mj—v 1> m) f

j=1 j=1

9Im — g we have
amj

Fli; = T

;= my — Com; J g My,
Thefirst order expansion of f(m;, ﬁ) around ri; yields

f(m;,B) = f(#;,8) + T}, (m

and therefore the Lagrange multipliers are

— ;)

~ + A 2
n; =3 f(mj,B), £ =T}, Cm; s, (19
hence
~ 3 + 3
mj =mj— Cn;J g1, X5 f(m;, B). (19)

Dueto the singularity of the Jacobian matrix J ¢, ; , the co-

variance matrix of the constraint 3; has rank three.
From (18) and (19) the cost function (17) isapproximated
as

1 AT .
=32 fm;. ATE f(m;.B) (20
j=1

which represents afirst order approximation of the geomet-
ric distance (6) and is similar to the Sampson distance (10).
However, in (10) the matrices 3 ;j Were computed using the
error corrupted measurements 1 ; instead of the corrected
mm; datapoints, and Cp,; = Ie.

Using the linearity of the constraint (7) in the tensor ele-
ments @ the cost function (20) can be rewritten as

1.7 A " A+
J =36 S6)=>z]%"z;. ()

j=1

5()6,

Minimizing (21) over 8 isan iterative processand yields an
unconstrained & which is not a valid tensor. Let 8™ be the
estimate obtai ned at the u-thiteration. Our approachto com-
pute a geometrically valid tensor is to project 6" onto the
space of 3, obtain 3™, compute 6, = g (BM) which is
then used for the next iteration (see also Section 4.4).

The advantage of using +#2; in the Jacobian is twofold.
Firstly, the matrix 3; is known to have rank three and not
just ill-conditioned, which may not be fully compensated
in the estimation process by using the pseudoinverse. Sec-
ondly, the data correction alternates with the parameter esti-
mation in a fashion similar with the expectation maximiza-
tion (EM) paradigm. Indeed, given an esti mateBM , thecor-
rected measurements 7 ; are computed from (19), whichin
turn yields an improved B[Hll found by minimizing (20)
over the space of 8 and enforcing thetensor constraint. Sim-
ilar two stage approach was also employed, for example, in
statistics for nonlinear factor analysis[1], and in computer
vision for structure from motion [7].

The minimization (21) over the unconstrained parameter
space of 8 requires solving the generalized eigenval ue prob-
lem

V; T =~ =1[50)-C6)]6=0,; (22

subject to [|@]| = 1, with the scatter matrix (A) defined in
(21) and the weighted covariance matrix C(6) defined as

By ()] O (1T
=30 S w20, [ 20
j=1k,l=1 mj
(23)

where 7, ; denotes the k-th component of the Lagrange mul-
tiplier n; (18). Both (@) and C(8) are positive semidefi-
nite matrices. The solution is unbiased in thefirst order [9].

To solve (22), at eachiterationthe updated estimateisthe
smallest eigenvector of

(olc"]) " = ¢ (0[;]) 6"+ (24)

See [9] for detailed description of the HEIV algorithm.

For conic fitting and fundamental matrix estimation it
was found experimentally that the minimization of (21) by
solving an eigenvalue problem similar to (24) is faster than
the LM technique while having the same accuracy [4, 10].
Theresults to be described in Section 5 extend this observa-
tion for the trifocal tensor estimation.

It isimportant to point out that the original Sampson so-
[ution [13] solved iteratively

g (ém) Gt _ gt



which yields a biased estimate [6, p.273]. Thus the term
Sampson distance implies only the cost function since the
minimization is achieved with the LM agorithm [5], or by
more advanced eigentechniques[4, 6, 8, 9].

4.2. Bifurcation of the Solution

Consider for the moment the algebraic error minimization
(11). The solution is the eigenvector corresponding to the
smallest eigenvalue of the matrix Y 7_, ZjT Z ;. However,
for noisy data it may happen that the last two eigenvalues
havevery similar values, i.e., the dimension of thethe effec-
tive null space is larger than one. Furthermore, the sought
solution may no longer correspond to the smallest eigen-
value. The change of order represents a bifurcation of the
objectivefunction and can have adramatic effect on the per-
formance when the smallest eigenvector is not the desired
solution. The use of thewrong eigenvector as the initializa-
tion of the LM algorithm leads to a drastic increase in the
convergencetime and possibly to anincorrect final solution.

The presence of bifurcation was described for structure
from motion [7] for large measurement errors and a trans-
lation parallel to the image planes. It was noted that at a
certain noiselevel thetrand ation estimate suddenly changed
directionwith 90°. Sincethe effective dimension of the null
spaceisrelatively easy to determine, the possibility for abi-
furcation can be recognized. The solution proposed in [7]
was to retain the eigenvector which better satisfies the un-
derlying geometrical properties of the task.

A null space with effective rank two can also appear
when solving (24). The solution may be chosen asthe * bet-
ter” tensor, i.e., the one which gives a smaller reprojection
error, however, this requires a large amount of computa-
tions. Instead, we used the minimum norm technique from
statistics [17, pp.58-59], which beside being much faster
was also found experimentally to give better results.

Let 6, and 8, be the two generalized eigenvectors span-
ning the null space. Then 9 = alél + azég isalso avalid
solution. To find a4, a3 beside the minimum norm condi-
tion another linear congtraint ' b = 1, where b isaknown
vector, isemployed. It can be proven that

T —1gT
HH"H)"'H"b HA|

6= :
b'HH"H)-'H'b

6., 6,) (25

which dependson b. In the iterative procedure an adequate
choice of b for the (v + 1)-th iteration is to find the index
« of the largest entry in absolute value of élcu] and set all the
elements of b to zero, except b, = 1. The vector d isnor-
malized to satisfy the norm one constraint.

4.3. Improved I nitial Solution

Following [8] we used a generalized total least squares
(GTLS) solution instead of (11). The approximate covari-

ance of the k-th row of the data matrix Z; is obtained by
error propagation

ou- [ o2

Will assume that

Crj =7m;C, v; >0, k=1,...,4,j=1,...,n (26)

where y;, € are unknown and determined by minimizing

n 4
> > llek - CliE (27)

j=1k=1

where|| - ||z isthe Frobeniusnorm of amatrix. Thesolution
of (27) is

4
Y im1 k=17 Crj
n 4 2
E]’:l k=1 Vij

To obtain for € and 1; Start from y,; = 1 and iterate
twice (28). Therelation (26) together with the ssimplifying
assumption that the rows of the datamatrix Z; are uncorre-
|lated implies that computing C(8) (23) using the measure-
mentsyieldsamatrix proportional to €. Under thesame as-

A

sumptions the scatter matrix S () becomes

o trace(C_’ij)

C_' = 3 k —
! trace(Cz)

. (28)

n

5 o+ . .

§=>2]%z; 3;=diag(y;, 72 V3j:74)-
i=t

The unconstrained initial solution é[D] therefore is obtained
using instead of (24)

56" = r&§" (29)

whichisa GTLS problem having closed form solution, the
smallest generalized eigenvector.

4.4 Imposing the Tensor Constraint

Let 6" € R?7 bethe current esti mate, obtained by solv-

ing (24). To impose the tensor constraint on 6"*" the un-
constrained solution is projected into R4, the space of the
cameraparameters 3, where the constraint is approximately
obeyed. The solution is updated in this space and subse-
guently mapped back into the unconstrained space. Thepro-
jection can be carried out optimally in the metric induced by
the covariance matrix of 8", This covariance matrix is
estimated by [6, p.285]

Cptory) x W, W:[s(é[;])—w (é[g]” (30)



where A isthe smallest generalized eigenval ue correspond-
ing to """ Because of (30) the range of the covari-
ance matrix C@[um (and the row space of W) coincides
with the hyperplane in IR%7 having the normal é[u+1], asre-
quired by any procedure seeking a satisfactory update for

[:)M. Indeed, the projector into this hyperplaneis Py, 11y =

(Iz7 _ é[u+1]0A[u+1] T) and

Pjrutn) Chrutn) Pgrusy = Cypu

because of (24). To find B[Hll the following nonlinear | east
squares problem has to be solved under the Mahalanobis
metric defined by C 41,44

Alud1 Alu41 2
ﬂ[ o = arg min 6"t _ g (B™*) H - . (31
ple+1l Glu+1]
Linearizing g (B[H”) yields

Alut1]

5lut1] Alul 4]
g (8" =6+ 375, (87 -5") @2
wherethe definition of é[g was also taken into account. The
projection defined in (31) isthen solved asalinear weighted
least squares problem. Notethat the weights W are optimal
by the Gauss-Markov theorem. The updated estimateis
Aluti]

B

gl

=8

Al

glﬁ[“]WJ J5mWoe (33

g8t
where the fact that §1*+! isin the null space of W was also
taken into account.

The above procedureis actually agauge fixing [11]. The
parametrization by 3 isconsistent, but not minimal [14] and
at least in theory the two scale factors of P’ and P” can
be also eliminated. Gauge fixing was shown to improve the
computational behavior of the LM based optimizations[11].

4.5. Reliability Evaluation

Thereliability of the obtained estimatessi2; and 8 can be as-
sessed by defining their confidence regions. for the parame-
tersrin; and . Duri ng the estimation processthe knowledge
of the noise variance o2 was not requi red however the scale
of the confidence regions depends on 2. It can be proven
[9] that the estimator
AT A A

52 _ 0 S(0)6
v In — 24
is unbiased in the first order.

The covariance of the unconstrained tensor was com-
puted (up to ascale) in (30). It can be shown by error prop-
agation that the estimated covariance of the constrained ten-
sor isa; C Where

¢, =J7. [J WJT]+J (34)

bc g3 |V 916 gl8 gl

E 5t 0 512
(@ (b)

Figure3: Generic data. (a) Spatial configuration of thecam-
eras. (b) Typical view of the 20 points.

The covariance of the corrected measurements 77z ;, condi-
tioned on @ can be obtained by error propagation from (19)
as described in [9]. The unconditioned covariance matrix
&Zij must include the uncertainty due to the estimation
of @ . It can be proven that

A (2)

Cp; =Cp + € (35)

m;
A:z)J = Cn; — ijJflmjﬁl;JfTWijJ
CA’SL)J - ijJfITﬁjﬁ:;ZAj ééc ZAJTEA:;J}—WJ Cm;
The matrix C ' hasrank three since the second expression

ontherights de removesthe uncertainty in the subspace or-
thogonal to the three dimensional variety of the constraint.

Thesecond term € Z)J accountsfor the uncertainty of thees-
timation process due to the specific properties the available
measurements such as number of points, spread, etc.

5. Experimental Results

We have estimated the trifocal tensor using three different
approaches

¢ GS: Gold Standard algorithm [5, pp.385]. TLSinitial
solution (11).

e HEIV: minimization of the Sampson distance (20)
with HEIV estimator. GTLS initial solution (29).

e SLM: minimization of the Sampson distance (10) with
the LM procedure. TLSinitial solution (11).

All three methods were implemented in MATLAB and for
LM the Optimization Toolbox function was used. It isim-
portant to emphasi ze that the GS method is the theoretically
optimal technique under normal measurement noise.

5.1. Synthetic Data

Two types of synthetic data were employed. The generic
data consisted of 20 points uniformly distributed in a cube
with the three cameras (f=1700 pixel units) located around
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Figure 4: The histograms of the residual errors for generic
data. Employed estimation method: (a) GS. (b) HEIV. (¢)
SLM.
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Figure 5: Difficult data. (a) Spatia configuration of the
cameras. (b) Typical view of the 128 image points.

thecloud (Figure 3a). Theimage pointswere corrupted with
normal noise, o = 2 pixel units. A typical view isshownin
Figure 3b. Thetrifocal tensor was estimated in 500 trialsfor
each method.

As expected, for “good” data all three methods per-
formed similarly (Figure 4). However, the time to conver-
gence differed dramatically. Taking the HEIV as reference,
GS was about three times and the SLM at least an order of
magnitude slower.

We have also investigated a difficult data set. The three
cameras (f=1440) are far from from a synthetic calibration
grid and their positionsonly slightly deviate from a vertical
line (Figure 58). Note that the baseline between the cam-
erasis very small and the definition of the trifocal planeis
not firm[5, p.373]. The 128 image pointsin each view were
corrupted with normal noise, o = 1. Thetrifocal tensor was
estimated in 100 trials for each method.

The performances of the GS and HEIV methods were
statistically identical except for five trials in which the GS
failed to converge to the correct solution (Figure 6a) due
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Figure 6: The histograms of the residua errors for difficult
data. Employed estimation method: (a) GS. (b) HEIV. (¢)
SLM.

to a poor TLS initial solution generated by a bifurcation.
However, usingthe GTL Sinitial solution borrowed fromthe
HEIV procedure these errors could be eliminated, proving
theimportance of employing the best possibleinitialization.

Thedifficult data put alarge burden on the LM algorithm
which needed much more iterations than for generic data.
Again using the HEIV asreference, the GStook at least ten
times longer to converge, while the convergence of SLM
was impractically slow. Furthermore, the performance of
SLM is significantly worse than that of the two other tech-
niques (Figure 6¢). Thus, for difficult datathe SLM cannot
be considered as a subgtitute for GS[5, p.389].

We conclude that the HEIV method has a performance
identical to the optimal GS technique but it is much faster.
The use of GTLS initial solution is recommended for GS,
though once implemented already most of the code needed
for HEIV isin place. None of the algorithms were imple-
mented optimally beyond common sense MATLAB tricks,
and we have a so not investigated the sparse LM algorithm
[5, pp.571-576]. The sparse LM returns the same esti-
mates as a full LM, only the amount of computations is
reduced. However, its implementation is problem specific
and requires considerable sophistication. The HEIV estima-
tor (while not a trivial method, we acknowledge) is a gen-
eral technique already applied to numerous computer vision
problems, e.g., [8, 9, 10].

5.2. Real Data

To illustrate the effectiveness of the reliability measures
(Section 4.5) we have used three images taken from the
webpage of the Oxford Visual Geometry Group (Figure 7).



Figure 7: Experiments with real images. Left: the three
views with the correspondences marked. Right: confidence
regions of four points from the view at the | eft.

From these images 20 correspondences were chosen manu-
ally. Thetrifocal tensor was then estimated (residual error
0.4033 for both GS and HEIV), and the corrected measure-
ments marked in the images. This set of 20 triplets consti-
tuted the ground truth. Normal noise, & = 0.5, was added
to the pointsand thetrifocal tensor was estimated again with
the GS and HEIV methods. They gave practically identical
results with aresidual error of 0.1725.

The confidence regions of the corrected image points
were then obtained (for 0.95 confidence level) according to
(35). At theright of Figure 7 such confidence regions are
shown for four pointschosenin theview at theleft. Thecor-
rected measurementsare the centers of the ellipseswhilethe
“true” (ground truth) points are always located inside their
confidence regions. Note the differencesin size and orien-
tation between the different confidence regions.

6. Conclusion

We have presented an application of ageneral technique, the
heteroscedastic errors-in-variables (HEIV) estimator. Het-
eroscedagticity inherently appears in computer vision tasks
whenever a nonlinearity is present or an incidence relation
is to be enforced between noisy measurements. We have
shown that for the estimation of thetrifocal tensor the HEIV
estimator achieves the performance of the optimal Gold
Standard at less computational effort. MATLAB code of the
estimator is available at the website
www. cai p. rutgers. edu/riul
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