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Abstract

Reliable estimation of the trifocal tensor is crucial for 3D
reconstruction from uncalibrated cameras. The estimation
process is based on minimizing the geometric distances be-
tween the measurements and the corrected data points, the
underlying nonlinear optimization problem being most often
solved with the Levenberg-Marquardt (LM) algorithm. We
employ for this task the heteroscedastic errors-in-variables
(HEIV) estimator and take into account both the singular-
ity of the multivariate tensor constraint and the bifurcation
which can appear for noisy data. In comparison to the Gold
Standard method, the new approach is significantly faster
while having the same performance, and it is less sensitive
to initialization when the data is close to degenerate. Ana-
lytical expressions for the covariances of the parameter and
corrected image point estimates are available for the HEIV
estimator, and thus the confidence regions of the corrected
measurements can be delineated in the images.

1. Trifocal Tensor
The trifocal tensor describes the intrinsic projective proper-
ties of a group of three images taken with uncalibrated cam-
eras. The role of trifocal tensor in the projective reconstruc-
tion of 3D structures is extensively discussed in the litera-
ture, and we refer to the recent book [5, pp.355–378] for an
excellent treatment of all the relevant topics, and to [16] for
an comprehensive discussion of the involved optimization
methods.

In this paper will focus on the problem of estimating the
trifocal tensor from 3-view point correspondences, i.e., from
the matched images of 3D points. We will assume that all the
correspondences are correct. While the estimation method
presented here can be easily robustified similar to [14], we
concentrate on issues related to the behavior of the estima-
tion process, i.e., on numerical robustness.

Will start by reviewing the geometric relations needed in
the sequel. Given three cameras characterized by unknown
projective matrices

�
,
���

,
��� �

, the images of a 3D point �
in each view will be denoted � , � � , � � � . In homogeneous
coordinates ���	��
����
�����
������ and similarly for the points
in the other two images. The projective ambiguity allows
to express the camera matrices as

� ��� ��� ��� , � � ����� � ! � � ,� ��� ��� "#� ! ��� � , where ! � and ! ��� are the projection of the first
camera center $ in the second and third image (Figure 1).
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Figure 1: Point-point-point correspondence. Definition of
the geometric elements used in the paper.

Thus ! � and ! � � are the epipoles corresponding to $ .
The <>=?<@=�< trifocal tensor A describes a 3D incidence

relation through a trilinearity among related points (lines)
in the three images. The trilinearities can be written for the
point correspondences as� � � �CB D�E�F 
 F A FHG � � ��� �IBJ�K�L� B � (1)

where � M�� B is the skew-symmetric matrix such that MN=POQ�� M�� B O , and the <N=R< matricesA F �KS F ! � � �JT ! �VU �F (2)

are the correlation slices [3] of the trifocal tensor. Note thatA F depends only on the parameters of the projection matri-
ces
� � � � � � , and has rank two. It can be shown that only

four of the nine relations captured in (1) are linearly inde-
pendent [5, pp.417–421]. We will use those in the upper leftW = W block in (1).

The epipolar lines in the second and third view of the im-
age point � in the first view will be defined asX � ��� ! � � B � � X ��� ��� ! ��� � B � ����Y (3)

Multiplying (2) left and right respectively with
X � � and

X ���
yields due to the vanishing cross productsX � � A F X � � �KZ Y (4)

The relation (4) captures the degeneracy of epipolar line
transfer [5, pp.374–375]. Another important algebraic prop-
erty of the trifocal tensor is that the linear combination[ F 
 F A F has also rank two. The left and right null-vectors
are the epipolar lines

X �
and
X ���

[5, pp.363–364]X � � D E F 
 F A F G �K� �� and

D E F 
 F A F G X ��� �K� � Y (5)
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2. Estimation Methods
From (1) it can be seen that the tensor is defined only up to
a constant, i.e., there are 26 unknown parameters. From ge-
ometric considerations, however, it is easy to prove that the
tensor can have only 18 degrees of freedom (d.f.). Indeed,
the three cameras have <@=J\]\^�K<]< parameters from which
we must subtract the inherent ambiguities introduced by the
3D projective transformation (15 d.f.).

The additional constraints which have to be satisfied by
the 26 parameters in order to represent a trifocal tensor
are complicated polynomial expressions. Papadopoulo and
Faugeras [12] were the first to obtain 12 such (not inde-
pendent) relations, while the minimal set of 8 conditions
was recently derived by Canterakis [3]. The additional con-
straints being higher degree polynomials they can be im-
posed only after an estimate of the 26 parameters becomes
available through unconstrained minimization. To take into
account the underlying geometry the tensor (1) must be
reparametrized. An often used reparametrization is by the
24 parameters of the projection matrices

� �
,
� � �

based on
(2), but other possibilities were also investigated [14].

Without loss of generality we can consider that � , � � , � � �
are affine coordinates, i.e., �_�`��
a����
����b\��c� , etc., where
a��� Y�YdY ��
 � �� are the measurements in the three images. As-
suming independent normally distributed measurement er-
rors, the optimal maximum likelihood estimate (MLE) is ob-
tained by minimizinge�f � gEhdi ��jlk � h �am� hon ��p jrq � �h �sm� �hut � p jNq � ���h �vm� ���h�t � (6)

i.e., the sum of squared geometric distances between the
measurements � h , � �h , � � �h and the corrected data pointsm� h �sm� �h �sm� � �h , the latter obeying the trilinear constraints (1) for
the estimated tensor mA . Note the distinction between the
noisy measurements and the geometric elements (the true or
equivalently the corrected data points). In Section 1 � was
a geometric element.

Since the corrected data points must be in correspon-
dence, they are the projections on the three image planes of
an unknown 3D point � . Thus the corrected point coor-
dinates w
 � � YdY�Y �Lw
 � �� are rational functions of the camera pa-
rameters and the three spatial coordinates of � . Solving the
nonlinear estimation problem (6) with this parametrization
always yields a geometrically valid tensor. This projective
bundle adjustment procedure is called the “Gold Standard”
method in [5, pp.385]. The minimization is performed using
the Levenberg-Marquardt (LM) algorithm for the <ux p Wuy
unknown parameters yielded by x measurements, making
the estimation process very demanding computationally. It
is possible to reduce the computations by implementing a
sparse LM algorithm [5, pp.571–576], but in practice most

often a first order approximation of (6) is used. The approx-
imation is called the Sampson distance [5, pp.387] since it is
based on an old technique proposed for ellipse fitting [13].

Define the vector z{�	� 
 � ��
 � ��
 � � ��
 � � ��
 � �� ��
 � �� � �}|Q~r� .
The four independent trilinear constraints from (1) can be
rearranged as a homogeneous multivariate expression��� mz}� m��� � m� m� ����� (7)

linear in the 27-dimensional vector of the tensor parametersm� . Let the 24-dimensional vector m� have as entities the ele-
ments of the estimated projection matrices m� � and m� � � . Then
(2) can be rewritten as m� ��� k m� n . The

y = Wo� matrix m� has
each element a product of some of the corrected point co-
ordinates w
 � � Y�Y�Y ��w
 � �� . Thus, m� ��� k mz n and let �^� k mz n be
the � -th row of � k mz n . The constraint (7) can be also written
as � k mz}� m� n ��� k mz n � k m� n �K��� Y (8)

The ��= y Jacobian matrix of the constraint with respect to
the noisy measurements z is defined following [2]���]� � ��� � k z}� m� n �� z k �^�o� � n

F � ����� � k z}� m� n��� F Y
(9)

In the first order approximation of (6) the constraint (8)
is linearized, as will be shown in Section 4. In [14] the
linearization was performed around the measurements z h ,
however, we will show that linearizing around the corrected
data points mz h is more advantageous.

The expression of the Sampson distance ise � gEh�i � ��� z h � m�^� � � � ��]� � � �¡�o� ��� �v¢£��� z h � m�¤� (10)

where ¥ ¢ stands for the pseudoinverse of the matrix ¥ .

The quantity
��� z h � m�^� � � h m� is the value of the mul-

tivariate constraint (8) computed for z h , i.e., the algebraic
distance of z h from the variety in ~r� defined by (8). Note
that m� appears also in the expression of

�¡�o� � �
. To minimize

the criterion (10) again the LM algorithm is employed [5,
pp.387], or a modification of the Gauss-Newton technique
[14].

The LM based optimization starts from the initial solu-
tion obtained by minimizing the algebraic errorm�a¦ §C¨ ��©]ª¬«o�®V¯° gEhdi �²± � h � ± � subject to ³³³ m�a¦ §¬¨ ³³³ ��\ (11)

which is a Total Least Squares (TLS) problem. Since
� h is

not a linear function in the measurements the TLS solution
is biased [8], but the normalization of the measurements [5,
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Figure 2: Singular constraint. The dimension of the space
spanned by the gradients is less than the number of indepen-
dent equations.

pp.91–93] helps to reduce the effect of the bias. The initial

solution is usually not a geometrically valid tensor and m� ¦ §C¨
is corrected to obey (2) [5, pp.385].

The quality of the initial solution has a strong influence
on the performance of nonlinear optimization methods. The
main contribution of this paper is to propose a different way
to estimate the trifocal tensor by minimizing a cost function
similar to the Sampson distance. For “good” data the new
approach has the same performance as the Gold Standard
method (but it is significantly faster), while for “bad” data
it is less sensitive and thus numerically more robust.

3. On the Singularity of ´ � ��w�
The �µ= y Jacobian matrix (9) computed with mz and m� ,�¡�]��¶�

has rank three. The property was already reported
in [14] and explained using differential geometry concepts.
The tensor defines a variety of dimension three in ~r� (the
space of the measurements, z ) since each point on the va-
riety corresponds uniquely to a point in 3D. See also [15] for
a detailed discussion of varieties in the context of the epipo-
lar constraint.

A constraint having the Jacobian vanish is called singular
[6, pp.131–133]. The columns of

�¡�o��¶�
are the gradient vec-

tors of the surfaces � � k mz�� m� n �·Z , �¸�¹\º� Y�YdY � y , and the
singularity implies that the four vectors are linearly depen-
dent. This is illustrated in two dimensions in Figure 2. The
two surfaces are tangent in the point mz and the two gradients
are collinear. The point-point-point correspondence of the
trifocal tensor is not the only case in computer vision when
a singular constraint is met for general (nondegenerate) data.
The conditions to be satisfied by an essential matrix are also
singular [6, pp.336–338].

A rigorous algebraic proof of the singularity of (8) is
based on the relations between the geometric elements in the
three views (Figure 1), and provides another interpretation
of the role of degenerate transfers between the views. To
simplify the notations, for the moment will return to geomet-
ric entities (as in Section 1) and assume that z satisfies the
tensor constraint. The Jacobian matrix is singular when a
linear combination of the four columns vanishes, i.e., sums

up to � � . This is equivalent to show that a linear combina-
tion of the four elements on a row is zero, using same coef-
ficients for all the rows.

Denote the <»=�< matrix on the left side of (1) as ¼ k z n ,and ½r�¾��Z���Z��b\���� . Using ½ we can select the four indepen-
dent constraints employed in this paper, and thus the four el-
ements of the ¿ -th row of the Jacobian matrix are in the upper
left
W = W block of the <N=À< matrix��½º� � B � ¼ k z n��� F ��½º� B Y (12)

We prove next that the coefficients of the sought linear com-
bination of the four gradients are products of the compo-
nents of the epipolar lines

X �
,
X ���

(3). That isX � � ��½º� � B � ¼ k z n��� F � ½b� B X � � �ÁZÂ¿²��\u� Y�YdY ��� Y (13)

When ¿Ã��\º� W � ¼ k z n��� F ����� � � B A F ��� ��� � B (14)

and it is easy to verify that��� � � � B ��½�� B X � � ����� ��� � B ��½b� B � ! ��� � B � ��� � T 
 � �� X ��� Y (15)

The geometric meaning of (15) is that the point � ��� is on the
epipolar line

X ���
. Therefore (13) becomes (4) and vanishes.

When ¿Ã��<� ¼ k z n��� � �ÅÄÆ \ZZµÇÈ B D E F 

F A FHG � � ��� � B (16)

which makes (13) vanish because of (15) and (5). The cases
of ¿É� y ��Ê���� can be proved the same way.

The Jacobian matrix thus is ill-conditioned near the so-
lution. This might be the cause why the LM algorithm
uses more steepest-descent than Gauss-Newton steps, as we
have observed experimentally when minimizing the Samp-
son distance (10). Preference for the former significantly in-
creased the time to convergence.

4. Numerically Robust Estimation
The heteroscedastic errors-in-variables (HEIV) model is
the most general representation of the measurements, each
data point z h , ËÌ� \º� Y�YdY �Íx , having independent er-
rors with different covariance matrices, i.e., Îuz h ÏÐ@Ñ k �a�»Ò �Ó $ ��� n , where $ ��� is known and the common
noise variance Ò �Ó is to be estimated from the data. An esti-
mator for multivariate constraints and heteroscedastic noise
was developed in [9]. The technique is applied here to the
trifocal tensor estimation taking into account the singularity
of the problem. As the experimental results will prove, the
HEIV estimator is significantly faster than the Levenberg-
Marquardt algorithm and has superior performance for close
to degenerate data.
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4.1. HEIV Estimator
The availability of the first two moments of the error dis-
tribution allows the definition of a minimization criterion
based on squared Mahalanobis distanceseÃÔ � \W gEh�i � k z h T mz h n � $ ¢� � k z h T mz h n � (17)

subject to (8). Note that for normally distributed errors (17)
is the MLE criterion, and if the errors in the three views are
uncorrelated it is identical to (6) under the Mahalanobis met-
ric.

The minimization of (17) can be carried out by introduc-
ing the Lagrange multipliers Õ h ,eÃÔ � \W gEhdi � k z h T mz h n � $ ¢� � k z h T mz h n p gEhdi � Õ �h � k mz h � m� n Y
Imposing Ö]×�ØÖ mz � �K� we havemz h �Áz h T $ � � �^�o��¶� � Õ h � �¡�o��¶� � ��� � k mz h � m� n �� mz h Y
The first order expansion of

� k z h � m� n around mz h yields� k z h � m� n � � k mz h � m� n p � ��]��¶� � k z h T mz h n
and therefore the Lagrange multipliers areÕ h � mÙ ¢h � k z h � m� n � mÙ h � � ��o�Í¶��� $ � � �¡�o��¶��� (18)

hence mz h �Áz h T $ � � �¡�o��¶� � mÙ ¢h � k z h � m� n Y (19)

Due to the singularity of the Jacobian matrix
���]�Ú¶� �

, the co-

variance matrix of the constraint mÙ h has rank three.
From (18) and (19) the cost function (17) is approximated

as e � \W gEhdi � � k z h � m� n � mÙ ¢h � k z h � m� n (20)

which represents a first order approximation of the geomet-
ric distance (6) and is similar to the Sampson distance (10).
However, in (10) the matrices mÙ h were computed using the
error corrupted measurements z h instead of the correctedmz h data points, and $ � � �Á� � .

Using the linearity of the constraint (7) in the tensor ele-
ments m� the cost function (20) can be rewritten ase � \W m� ��Û k m� n m� � Û k m� n � gEhdi � � �h�mÙ ¢h � h Y (21)

Minimizing (21) over
�

is an iterative process and yields an
unconstrained m� which is not a valid tensor. Let m�ÝÜ ÞCß be the
estimate obtained at the à -th iteration. Our approach to com-
pute a geometrically valid tensor is to project m�aÜ Þ¬ß onto the

space of
�

, obtain m�áÜ ÞCß , compute m�aÜ Þ¬ßâ �·� � m�PÜ Þ¬ß � which is

then used for the next iteration (see also Section 4.4).
The advantage of using mz h in the Jacobian is twofold.

Firstly, the matrix mÙ h is known to have rank three and not
just ill-conditioned, which may not be fully compensated
in the estimation process by using the pseudoinverse. Sec-
ondly, the data correction alternates with the parameter esti-
mation in a fashion similar with the expectation maximiza-
tion (EM) paradigm. Indeed, given an estimate m�PÜ Þ¬ß , the cor-
rected measurements mz h are computed from (19), which in

turn yields an improved m�@Ü ÞÍã�äåß found by minimizing (20)
over the space of

�
and enforcing the tensor constraint. Sim-

ilar two stage approach was also employed, for example, in
statistics for nonlinear factor analysis [1], and in computer
vision for structure from motion [7].

The minimization (21) over the unconstrained parameter
space of

�
requires solving the generalized eigenvalue prob-

lem æ ¶° e¹ç��� e� m� �}� Û k m� n T $ k m� n � m� ��� �Úè (22)

subject to ± m� ± �¾\ , with the scatter matrix Û k m� n defined in
(21) and the weighted covariance matrix $ k m� n defined as$ k m� n � gEh�i � �E�ué ê i �Lë � h ë ê h�ì � �l� k mz hun� mz h í � $ � � ì � �Pê k mz h]n� mz hÂí

(23)

where ë � h denotes the � -th component of the Lagrange mul-
tiplier Õ h (18). Both Û k m� n and $ k m� n are positive semidefi-
nite matrices. The solution is unbiased in the first order [9].

To solve (22), at each iteration the updated estimate is the
smallest eigenvector ofÛ � m�ÝÜ ÞCßâ � m�Ü ÞÍã�äåß �Áîa$ � m�ÝÜ Þ¬ßâ � m�ÝÜ ÞÚãLäVß Y (24)

See [9] for detailed description of the HEIV algorithm.
For conic fitting and fundamental matrix estimation it

was found experimentally that the minimization of (21) by
solving an eigenvalue problem similar to (24) is faster than
the LM technique while having the same accuracy [4, 10].
The results to be described in Section 5 extend this observa-
tion for the trifocal tensor estimation.

It is important to point out that the original Sampson so-
lution [13] solved iterativelyÛ � m� Ü Þ¬ß � m� Ü ÞÍã�äåß �Áî m� Ü ÞÍãLäVß
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which yields a biased estimate [6, p.273]. Thus the term
Sampson distance implies only the cost function since the
minimization is achieved with the LM algorithm [5], or by
more advanced eigentechniques [4, 6, 8, 9].

4.2. Bifurcation of the Solution
Consider for the moment the algebraic error minimization
(11). The solution is the eigenvector corresponding to the
smallest eigenvalue of the matrix

[ ghdi � � �h � h . However,
for noisy data it may happen that the last two eigenvalues
have very similar values, i.e., the dimension of the the effec-
tive null space is larger than one. Furthermore, the sought
solution may no longer correspond to the smallest eigen-
value. The change of order represents a bifurcation of the
objective function and can have a dramatic effect on the per-
formance when the smallest eigenvector is not the desired
solution. The use of the wrong eigenvector as the initializa-
tion of the LM algorithm leads to a drastic increase in the
convergence time and possibly to an incorrect final solution.

The presence of bifurcation was described for structure
from motion [7] for large measurement errors and a trans-
lation parallel to the image planes. It was noted that at a
certain noise level the translation estimate suddenly changed
direction with ï]Zoð . Since the effective dimension of the null
space is relatively easy to determine, the possibility for a bi-
furcation can be recognized. The solution proposed in [7]
was to retain the eigenvector which better satisfies the un-
derlying geometrical properties of the task.

A null space with effective rank two can also appear
when solving (24). The solution may be chosen as the “bet-
ter” tensor, i.e., the one which gives a smaller reprojection
error, however, this requires a large amount of computa-
tions. Instead, we used the minimum norm technique from
statistics [17, pp.58–59], which beside being much faster
was also found experimentally to give better results.

Let m� � and m� � be the two generalized eigenvectors span-
ning the null space. Then m� �Kñ � m� � p ñ � m� � is also a valid
solution. To find ñ � �Úñ � beside the minimum norm condi-

tion another linear constraint m� � U ��\ , where
U

is a known
vector, is employed. It can be proven thatm� � ò k ò � ò n�ó � ò � UU � ò k ò � ò n ó � ò � U � ò ç�}� m� ��� m� �Í� (25)

which depends on
U
. In the iterative procedure an adequate

choice of
U

for the k à p \ n -th iteration is to find the indexô of the largest entry in absolute value of m�ÝÜ Þ¬ßâ and set all the
elements of

U
to zero, except õÚö �÷\ . The vector m� is nor-

malized to satisfy the norm one constraint.

4.3. Improved Initial Solution
Following [8] we used a generalized total least squares
(GTLS) solution instead of (11). The approximate covari-

ance of the � -th row of the data matrix
� h is obtained by

error propagation$ � h � ì � �^� k z hun� z h í � $ � � ì � �^� k z hun� z h í
Will assume that$ � h �ùø � h@ú$J�Ýø � h»û ZL�Ã����\º� Y�YdY � y �aË>��\u� Y�YdY �Úx (26)

where ø � h , ú$ are unknown and determined by minimizinggEhdi � �E� i � ± $ � h T ú$ ± �ü (27)

where ±¡ýL± ü is the Frobenius norm of a matrix. The solution
of (27) isú$þ� [ ghdi � [ �� i � ø � h $ � h[ ghdi � [ �� i � ø �� h �ÿø � h � trace k ú$J$ � hbn

trace k ú$ � n Y (28)

To obtain for ú$ and ø � h start from ø � h �Â\ and iterate
twice (28). The relation (26) together with the simplifying
assumption that the rows of the data matrix

� h are uncorre-
lated implies that computing $ k m� n (23) using the measure-
ments yields a matrix proportional to ú$ . Under the same as-
sumptions the scatter matrix Û k m� n becomesúÛ � gEh�i � � �h mÙ ¢h � h � mÙ h � diag k ø � h �¬ø � h �Cø � h �¬ø � h n Y
The unconstrained initial solution m�Ü � ß therefore is obtained
using instead of (24) úÛ m� Ü � ß �Kî ú$ m� Ü � ß (29)

which is a GTLS problem having closed form solution, the
smallest generalized eigenvector.

4.4 Imposing the Tensor Constraint

Let m�ÝÜ ÞÚãLäVß |¸~ �Cè be the current estimate, obtained by solv-
ing (24). To impose the tensor constraint on m� Ü ÞÍãLäVß the un-
constrained solution is projected into ~ �c� , the space of the
camera parameters m� , where the constraint is approximately
obeyed. The solution is updated in this space and subse-
quently mapped back into the unconstrained space. The pro-
jection can be carried out optimally in the metric induced by
the covariance matrix of m� Ü ÞÚãLäVß . This covariance matrix is
estimated by [6, p.285]m$ ¶° Ü ÞÚãLäVß ��� ¢ � � � � Û � m� Ü ÞCßâ � T î$ � m� Ü ÞCßâ ��� (30)
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where î is the smallest generalized eigenvalue correspond-
ing to m�ÝÜ ÞÍãLäVß . Because of (30) the range of the covari-
ance matrix m$ ¶° Ü ÞÍã�äåß (and the row space of � ) coincides

with the hyperplane in ~ �¬è having the normal m� Ü ÞÚãLäVß , as re-
quired by any procedure seeking a satisfactory update form�áÜ ÞCß . Indeed, the projector into this hyperplane is

� ¶° Ü ÞÍãLäVß �� � �Úè T m�ÝÜ ÞÍãLäVß m�ÝÜ ÞÍã�äåß � � and� ¶° Ü ÞÍã�äåß m$ ¶° Ü ÞÍã�äåß � ¶° Ü ÞÍãLäVß � m$ ¶° Ü ÞÍã�äåß
because of (24). To find m�@Ü ÞÍã�äåß the following nonlinear least
squares problem has to be solved under the Mahalanobis
metric defined by m$ ¶° Ü ÞÚãLäVßm� Ü ÞÍã�äåß �ù©]ª¬« �®V¯� Ü ÞÚãLäVß ³³³ m� Ü ÞÍãLäVß T � q � Ü ÞÍãLäVß t ³³³ � m$	�
 Ü ÞÍã�äåß Y (31)

Linearizing � � m� Ü ÞÍã�äåß � yields� � m�@Ü ÞÍãLäVß � � m�Ü Þ¬ßâ p � �� � ¶� Ü Þ¬ß � m�@Ü ÞÍãLäVß T m�áÜ Þ¬ß � (32)

where the definition of m�Ü Þ¬ßâ was also taken into account. The
projection defined in (31) is then solved as a linear weighted
least squares problem. Note that the weights � are optimal
by the Gauss-Markov theorem. The updated estimate ism� Ü ÞÍã�äåß � m� Ü Þ¬ß T � � � � ¶� Ü Þ¬ß � � �� � ¶� Ü Þ¬ß �²¢ � � � ¶� Ü ÞCß � m� Ü ÞCßâ (33)

where the fact that w� Ü ÞÍã�äåß is in the null space of � was also
taken into account.

The above procedure is actually a gauge fixing [11]. The
parametrization by m� is consistent, but not minimal [14] and
at least in theory the two scale factors of

� �
and
� � �

can
be also eliminated. Gauge fixing was shown to improve the
computational behavior of the LM based optimizations [11].

4.5. Reliability Evaluation
The reliability of the obtained estimates mz h and m� can be as-
sessed by defining their confidence regions. for the parame-
ters mz h and m� . During the estimation process the knowledge
of the noise variance Ò �Ó was not required, however the scale
of the confidence regions depends on Ò �Ó . It can be proven
[9] that the estimator wÒ �Ó � m� � Û k m� n m�<ux T Wºy
is unbiased in the first order.

The covariance of the unconstrained tensor was com-
puted (up to a scale) in (30). It can be shown by error prop-
agation that the estimated covariance of the constrained ten-
sor m� â is wÒ �Ó m$ ¶°� wherem$ ¶°  � � �� � ¶� � � � � ¶� � � �� � ¶� �²¢ � � � ¶� Y (34)

0 512

0

512

(a) (b)

Figure 3: Generic data. (a) Spatial configuration of the cam-
eras. (b) Typical view of the 20 points.

The covariance of the corrected measurements mz h , condi-
tioned on m� â can be obtained by error propagation from (19)
as described in [9]. The unconditioned covariance matrixwÒ �Ó m$ ¶� � must include the uncertainty due to the estimation
of m� â . It can be proven thatm$ ¶� � � m$�� ä��¶� � p m$�� � �¶��� (35)m$ � ä��¶� � � $ � � T $ � � �^�o�Í¶� � mÙ ¢h � ��]��¶� � $ � �m$ ��� �¶� � � $ � � �¡�o��¶��� mÙ ¢h¹m� h m$ ¶°� m� �h�mÙ ¢h � ��o��¶��� $ � �
The matrix m$�� ä��¶� � has rank three since the second expression
on the right side removes the uncertainty in the subspace or-
thogonal to the three dimensional variety of the constraint.
The second term m$�� � �¶� � accounts for the uncertainty of the es-
timation process due to the specific properties the available
measurements such as number of points, spread, etc.

5. Experimental Results
We have estimated the trifocal tensor using three different
approaches�

GS: Gold Standard algorithm [5, pp.385]. TLS initial
solution (11).�
HEIV: minimization of the Sampson distance (20)
with HEIV estimator. GTLS initial solution (29).�
SLM: minimization of the Sampson distance (10) with
the LM procedure. TLS initial solution (11).

All three methods were implemented in MATLAB and for
LM the Optimization Toolbox function was used. It is im-
portant to emphasize that the GS method is the theoretically
optimal technique under normal measurement noise.

5.1. Synthetic Data
Two types of synthetic data were employed. The generic
data consisted of 20 points uniformly distributed in a cube
with the three cameras ( � =1700 pixel units) located around
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Figure 4: The histograms of the residual errors for generic
data. Employed estimation method: (a) GS. (b) HEIV. (c)
SLM.
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Figure 5: Difficult data. (a) Spatial configuration of the
cameras. (b) Typical view of the 128 image points.

the cloud (Figure 3a). The image points were corrupted with
normal noise, Ò � W pixel units. A typical view is shown in
Figure 3b. The trifocal tensor was estimated in 500 trials for
each method.

As expected, for “good” data all three methods per-
formed similarly (Figure 4). However, the time to conver-
gence differed dramatically. Taking the HEIV as reference,
GS was about three times and the SLM at least an order of
magnitude slower.

We have also investigated a difficult data set. The three
cameras ( � =1440) are far from from a synthetic calibration
grid and their positions only slightly deviate from a vertical
line (Figure 5a). Note that the baseline between the cam-
eras is very small and the definition of the trifocal plane is
not firm [5, p.373]. The 128 image points in each view were
corrupted with normal noise, ÒR��\ . The trifocal tensor was
estimated in 100 trials for each method.

The performances of the GS and HEIV methods were
statistically identical except for five trials in which the GS
failed to converge to the correct solution (Figure 6a) due
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Figure 6: The histograms of the residual errors for difficult
data. Employed estimation method: (a) GS. (b) HEIV. (c)
SLM.

to a poor TLS initial solution generated by a bifurcation.
However, using the GTLS initial solution borrowed from the
HEIV procedure these errors could be eliminated, proving
the importance of employing the best possible initialization.

The difficult data put a large burden on the LM algorithm
which needed much more iterations than for generic data.
Again using the HEIV as reference, the GS took at least ten
times longer to converge, while the convergence of SLM
was impractically slow. Furthermore, the performance of
SLM is significantly worse than that of the two other tech-
niques (Figure 6c). Thus, for difficult data the SLM cannot
be considered as a substitute for GS [5, p.389].

We conclude that the HEIV method has a performance
identical to the optimal GS technique but it is much faster.
The use of GTLS initial solution is recommended for GS,
though once implemented already most of the code needed
for HEIV is in place. None of the algorithms were imple-
mented optimally beyond common sense MATLAB tricks,
and we have also not investigated the sparse LM algorithm
[5, pp.571–576]. The sparse LM returns the same esti-
mates as a full LM, only the amount of computations is
reduced. However, its implementation is problem specific
and requires considerable sophistication. The HEIV estima-
tor (while not a trivial method, we acknowledge) is a gen-
eral technique already applied to numerous computer vision
problems, e.g., [8, 9, 10].

5.2. Real Data

To illustrate the effectiveness of the reliability measures
(Section 4.5) we have used three images taken from the
webpage of the Oxford Visual Geometry Group (Figure 7).
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Figure 7: Experiments with real images. Left: the three
views with the correspondences marked. Right: confidence
regions of four points from the view at the left.

From these images 20 correspondences were chosen manu-
ally. The trifocal tensor was then estimated (residual error
0.4033 for both GS and HEIV), and the corrected measure-
ments marked in the images. This set of 20 triplets consti-
tuted the ground truth. Normal noise, Ò ��Z Y Ê , was added
to the points and the trifocal tensor was estimated again with
the GS and HEIV methods. They gave practically identical
results with a residual error of 0.1725.

The confidence regions of the corrected image points
were then obtained (for 0.95 confidence level) according to
(35). At the right of Figure 7 such confidence regions are
shown for four points chosen in the view at the left. The cor-
rected measurements are the centers of the ellipses while the
“true” (ground truth) points are always located inside their
confidence regions. Note the differences in size and orien-
tation between the different confidence regions.

6. Conclusion

We have presented an application of a general technique, the
heteroscedastic errors-in-variables (HEIV) estimator. Het-
eroscedasticity inherently appears in computer vision tasks
whenever a nonlinearity is present or an incidence relation
is to be enforced between noisy measurements. We have
shown that for the estimation of the trifocal tensor the HEIV
estimator achieves the performance of the optimal Gold
Standard at less computational effort. MATLAB code of the
estimator is available at the website

www.caip.rutgers.edu/riul
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