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Abstract

The features employed in content-based retrieval are
most often simple low-level representations, while a hu-
man observer judges similarity between images based
on high-level semantic properties. Using textures as
an example, we show that a more accurate description
of the underlying distribution of low-level features does
not improve the retrieval performance. We also intro-
duce the simpli�ed multiresolution symmetric autore-
gressive model for textures, and the Bhattacharyya dis-
tance based similarity measure. Experiments are per-
formed with four texture representations and four simi-
larity measures over the Brodatz and VisTex databases.

Keywords: content-based retrieval, texture descrip-

tion, similarity measure.

1. Introduction

Retrieval from a database of images (video se-

quences) by �nding semantic similarities with the vi-

sual information contained in the query, is a task of

great practical interest today. Numerous systems were

built and some are even enjoying commercial success.

See [1] for a comprehensive review.

The similarity measure between a query image and

the images in the database is usually computed employ-

ing low-level features associated with salient regions:

color, texture, shape etc. These features provide only

a crude representation of the image and most of the

semantic information, the very content which distin-

guishes an image from other types of information, is

lost.

In this paper we investigate performance bounds in

content-based image retrieval due to the inadequacy of

the employed feature representation. We chose texture
as a case study since two standard (partially overlap-

ping) databases are available [12, 13], and the problem

of texture modeling while relative simple and well de-

�ned, still exhibits the pitfalls of inadequate represen-

tations.

2. Images and Texture Homogeneity

The Brodatz [12] and VisTex [13] databases are fre-

quently employed in texture studies. The latter con-

tains a subset of the former. Brodatz has 112 while

VisTex contains 132, 512x512 gray level images.

�The research was supported by the NSF under the grants
IRI 95-30546 and IRI 96-18854.
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Figure 1. Examples of classes. (a) D57 Hand-
made Paper (Brodatz). (b) Tile.0007 (VisTex).
(c) D38 Water (Brodatz). (d) Tile.0005 (VisTex).

A class is de�ned by dividing the 384x384 central

part of each image into nine nonoverlapping 128x128

images [5]. Thus the Brodatz database contains 1008

and the VisTex database 1188 images.

The three main perceptual properties of textures:

periodicity, directionality and randomness [5] are easy

to recognize by humans but elusive when to be de-

scribed quantitatively by a machine. For example, the

resolution of the analysis is a crucial parameter since

the periodicity of a texture is directly related to the

size of the texture element (texel). While it is possible

to have an approximate estimate of the texel size [4],

in Section 3 only texture representation methods which

use the same window sizes for the entire database: the

multiresolution simultaneous autoregressive (MRSAR)

model [6], and the Gabor �lter bank [3], are considered.

Let examine the nine 128x128 images associated

with the same class. Since the original 512x512 im-

ages included into the texture databases were classi�ed
as texture by a human observer, it is not unexpected
to �nd signi�cant di�erences between separate regions

of the same image. In Figure 1 examples of decreas-

ing class homogeneity are shown. The nine images in

Figure 1a are very similar, while it will be di�cult to

retrieve using as query the image in the upper left cor-
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Figure 2. Neighborhood definitions for the
three resolutions of the MRSAR model.

ner of Figure 1d the other eight images belonging to

the same class.

3. Feature Extraction Methods

In the spatial domain textures are characterized by a

two step procedure. First, a window is slided across the

image and at each location the local structure is repre-

sented by a vector. Next, the mean and the covariance

of these vectors is used as the texture representation of

the entire image. To reduce the artifacts due to the dif-

ference between the size of the window and the texel,

the procedure is repeated for several window dimen-

sions. The �nal representation is the concatenation of

the outputs of individual procedures.

3.1. Gabor Filters
In the spatial domain the 2D Gabor functions are

complex sinusoidal gratings modulated by 2D Gaus-

sian functions. In the spatial frequency domain they

correspond to 2D bandpass �lters. A typical Gabor �l-

ter bank design is described in [3]. The frequency do-

main �ltering is equivalent to applying 24 spatial �lters

of increasing sizes, and thus a 24-dimensional feature

vector is associated with every pixel in the image.

3.2. MRSAR Method
The MRSAR method models the texture as a

second-order noncausal Markov random �eld. In [6]

the four parameters of the underlying autoregressive

model are estimated independently at three resolutions

using windows of size 5x5, 7x7 and 9x9 [2]. For each

resolution k the model is de�ned as

g(i; j) =
X

(m;n)2Nk

ak(m;n)g(i�m; j�n)+nk(i; j) (1)

where Nk is the employed neighborhood of pixel (i; j)
at resolution k, see Figure 2, g(�; �) the gray level val-

ues in the image and nk(i; j) the error term associated

with the model. A symmetric model is assumed with

ak(n;m) = ak(�n;�m) for all k. Together with the

standard deviation �k of the error term, at each reso-

lution �ve parameters are estimated and after concate-

nation a 15-dimensional feature vector is obtained.

The least squares estimations are carried out in a

large 21x21 window slided across the image with two

pixel steps. Careful analysis of the MRSAR procedure

reveals that

� At each resolution the estimation process in the

21x21 window integrates together representations

of widely di�erent local structures.

� The noise process driving the AR model is inde-

pendent of the resolution.

� The noise standard deviation �k is one to two or-

ders of magnitude larger than the autoregressive

coe�cients ak(n;m).

Based on the above observations the original MR-

SAR procedure can be simpli�ed. The texture in the

21x21 region is represented by a single, 12-dimensional

symmetric autoregressive model,

g(i; j) =
X

(m;n)2N

a(m;n)g(i�m; j � n) + n(i; j) (2)

where now N includes all the locations marked in

Figure 2. Together with the standard deviation of

the noise �, thus the texture is represented by a 13-

dimensional vector. This representation will be called

ORSAR (one resolution SAR). As will be shown, the

retrieval performance is not signi�cantly a�ected by

using the ORSAR representation.

4. Similarity Measures and Performance

Assessment

The ensemble of locally de�ned texture representa-

tions (feature vectors) is traditionally characterized by

mean � and covariance C. Employing only the �rst

two moments of the ensemble, the distribution is im-

plicitly assumed of being unimodal and normal.

Given the query image, described as (�
q
;Cq), an of-

ten used similarity measure is its Mahalanobis distance

from the entries in the database (�
d
;Cd)

m = (�
q
� �

d
)
T
C
�1
(�

q
� �

d
) : (3)

The covariance of the query C = Cq is used to de-

�ne the underlying metric. However, the Mahalanobis

distance fails when the two distributions di�er only by

their second order statistics. The Bhattacharyya dis-

tance [7, p.99]

b =
1

4
(�

q
� �

d
)
T
(Cq +Cd)

�1
(�

q
� �

d
)

+
1

2
ln

���Cq+Cd

2

���p
jCq jjCdj

(4)

on the other hand, takes all the available information

into account. Recently, we have shown an e�cient way

to compute the Bhattacharyya distance exploring the

special structure of most feature spaces [9].

To compare the performance of the three feature

representation (Gabor, MRSAR, ORSAR) and two

similarity measures (Mahalanobis, Bhattacharyya), in

Figure 3 the average recognition rate is plotted against

the number of retrievals for two databases (Brodatz,

VisTex). The databases have over 1000 entries, but

in practical situations only the quality of the �rst few

(say) 40 retrievals is of interest.

The Bhattacharyya based similarity measure always

outperformed the traditional Mahalanobis based mea-

sure. The Gabor �lter has slightly better performance
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Figure 3. The retrieval performance. (a) Vis-
Tex database. (b) Brodatz database. (c)
hBrodatz database. Employed representa-
tion/similarity measure (feature space dim).
M1:ORSAR/Bhatt(13). M2:MRSAR/Bhatt(15).
M3:MRSAR/Maha(15). M4:Gabor/Bhatt(24).
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Figure 4. Marginal histograms of two autore-
gressive coefficients.

than the MRSAR (with Mahalanobis similarity mea-

sure) as was also reported in [3]. The VisTex database

with less homogeneous classes yielded a lower retrieval

rate.

The e�ect of class inhomogeneity on the retrieval

performance can be seen by de�ning the homogeneous

hBrodatz database. For this database 50 images were

selected from the original Brodatz set. The example in

Figure 1a is typical for hBrodatz. The retrieval perfor-

mance shown in Figure 3c. In comparison to Figure 3a

the recognition rates are shifted upward with at least

0.1, except the method M4 (Gabor/Bhatt) which be-

came the best. This change in performance ranking

may explain why often texture segmentation studies

cannot �nd a universally optimal feature representa-

tion method [10, 11].

In the sequel will focus on the ORSAR represen-

tation with Bhattacharyya similarity measure to show

the intrinsic limitations of nonsemantical, exclusively

low-level features based retrievals.

5. Semiparametric and Nonparametric

Similarity Measures

The feature vector distribution derived from an im-

age is not necessarily unimodal, especially if the texel

and the window of analysis have comparable sizes. A

13-dimensional distribution is di�cult to visualize, and

in Figure 4 two marginal distributions are shown for

an image of the class in Figure 1b. Note the strong

bimodality. We can ask the question: will a more ac-

curate description of the feature distribution improve

the retrieval performance?

To investigate this issue the Bhattacharyya distance

between two arbitrary distributions q(x) and d(x) will
be employed [7, p.99]

B(q;d) = � ln

Z p
q(x)d(x)dx : (5)

5.1. Semiparametric Representation
The feature vector distribution is represented as the

mixture of M multivariate normals. For computational

considerations M was kept small, M = 4 in our ex-

periments. Using a simple ISODATA procedure [8,

p.98] the feature space is �rst clustered into M clus-

ters, which are approximated by a mean vector and a

covariance matrix. Then

B(q;d)=� ln

Z vuuut
 

MX
i=1

ni

N
qi(x)

!0
@ MX

j=1

nj

N
dj(x)

1
A dx

�� ln

MX
i=1

p
ninji

N

Z q
qi(x)dji (x)dx

�� ln

MX
i=1

p
ninji

N
e�b(qi

;dji
)

(6)

where ni is the number of points belonging to the i-th

multivariate normal, and ji = argminj b(qi;dj), with

b computed as in (4).
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Figure 5. The retrieval performance for the
VisTex database using different methods.

In Figures 5 and 6 the retrieval performance using

the semiparametric representation are shown. The per-

formance does not change signi�cantly.

5.2. Nonparametric Representation
To avoid the artifacts introduced by the mixture of

Gaussians, the distance (5) can be evaluated directly.

First however, the feature space has to be reduced to

N data points. We used N = 100 and 500 in the ex-

periments. The retained points correspond to the N

densest regions, each containing the same number of

points in the original set. These regions are delineated

by analysing the nearest neighbor distances.

Next, the retained point sets are scaled to be within

the unit 13-dimensional hypercube using as scaling fac-

tors the largest value in the database along each dimen-

sion. The terms q(x) � d(x) are computed by centering

a h < 1 size hypercube on the two points of a pair

of nearest neighbors in the combined q;d point sets,

and �nding the volume of the intersection. The opti-

mal h was determined by Bayesian inference from the

histograms of nearest neighbor distances for nine rep-

resentative classes from the database. For example, for

N = 500 and the Brodatz database, h = 0:22. The

nonparametric similarity measure is then de�ned as

B(q;d) = 1� 1

N

X
i2q;ji2d

Vi;ji (7)

where Vi;ji is the volume of overlap between the h-sized

hypercubes centered on the points i in point set q and

ji its nearest neighbor in d. Note that Vi;ji can be zero.

The retrieval performance (Figures 5 and 6) im-

proves with N, however never reaches that of the para-

metric ORSAR approach. The sensitivity of nonpara-

metric representations in such high dimensional spaces

is probably more detrimental than the simple, uni-

modal description by ORSAR.

6. Conclusion

We conclude based on the experiments presented

that the main factor in limiting texture retrieval per-

formance is not the inaccurate description of the fea-

ture distribution, but the nonhomogeneity of the im-

ages within a class. Extrapolating this observation to
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Figure 6. The retrieval performance for the
Brodatz database using different methods.

the general content-based retrieval problem, our �nd-

ings suggest the importance of including semantic de-

scriptions, however simplistic they are. These descrip-

tions should attempt to capture more global invariant

characteristics than those represented by the low-level

features.
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